:: FINSEQOP semantic presentation
theorem Th1: :: FINSEQOP:1
theorem Th2: :: FINSEQOP:2
theorem Th3: :: FINSEQOP:3
canceled;
theorem Th4: :: FINSEQOP:4
theorem Th5: :: FINSEQOP:5
theorem Th6: :: FINSEQOP:6
theorem Th7: :: FINSEQOP:7
theorem Th8: :: FINSEQOP:8
theorem Th9: :: FINSEQOP:9
theorem Th10: :: FINSEQOP:10
Lemma6:
for b1, b2 being non empty set
for b3 being Function of b1,b2
for b4 being Element of 0 -tuples_on b1 holds b3 * b4 = <*> b2
Lemma7:
for b1, b2, b3 being non empty set
for b4 being Nat
for b5 being Function of [:b2,b1:],b3
for b6 being Element of b4 -tuples_on b1
for b7 being Element of 0 -tuples_on b2 holds b5 .: b7,b6 = <*> b3
Lemma8:
for b1, b2, b3 being non empty set
for b4 being Element of b1
for b5 being Function of [:b1,b2:],b3
for b6 being Element of 0 -tuples_on b2 holds b5 [;] b4,b6 = <*> b3
Lemma9:
for b1, b2, b3 being non empty set
for b4 being Element of b1
for b5 being Function of [:b2,b1:],b3
for b6 being Element of 0 -tuples_on b2 holds b5 [:] b6,b4 = <*> b3
theorem Th11: :: FINSEQOP:11
theorem Th12: :: FINSEQOP:12
theorem Th13: :: FINSEQOP:13
theorem Th14: :: FINSEQOP:14
theorem Th15: :: FINSEQOP:15
theorem Th16: :: FINSEQOP:16
theorem Th17: :: FINSEQOP:17
theorem Th18: :: FINSEQOP:18
theorem Th19: :: FINSEQOP:19
theorem Th20: :: FINSEQOP:20
theorem Th21: :: FINSEQOP:21
theorem Th22: :: FINSEQOP:22
theorem Th23: :: FINSEQOP:23
theorem Th24: :: FINSEQOP:24
Lemma14:
for b1 being non empty set
for b2 being Nat
for b3 being Element of b2 -tuples_on b1 holds b3 is Function of Seg b2,b1
theorem Th25: :: FINSEQOP:25
theorem Th26: :: FINSEQOP:26
theorem Th27: :: FINSEQOP:27
theorem Th28: :: FINSEQOP:28
theorem Th29: :: FINSEQOP:29
theorem Th30: :: FINSEQOP:30
theorem Th31: :: FINSEQOP:31
theorem Th32: :: FINSEQOP:32
theorem Th33: :: FINSEQOP:33
theorem Th34: :: FINSEQOP:34
theorem Th35: :: FINSEQOP:35
theorem Th36: :: FINSEQOP:36
theorem Th37: :: FINSEQOP:37
theorem Th38: :: FINSEQOP:38
for
b1,
b2,
b3 being non
empty set for
b4,
b5 being
Function of
b1,
b3 for
b6 being
Function of
b3,
b2 for
b7 being
BinOp of
b3 for
b8 being
BinOp of
b2 st ( for
b9,
b10 being
Element of
b3 holds
b6 . (b7 . b9,b10) = b8 . (b6 . b9),
(b6 . b10) ) holds
b6 * (b7 .: b4,b5) = b8 .: (b6 * b4),
(b6 * b5)
theorem Th39: :: FINSEQOP:39
for
b1,
b2,
b3 being non
empty set for
b4 being
Element of
b3 for
b5 being
Function of
b1,
b3 for
b6 being
Function of
b3,
b2 for
b7 being
BinOp of
b3 for
b8 being
BinOp of
b2 st ( for
b9,
b10 being
Element of
b3 holds
b6 . (b7 . b9,b10) = b8 . (b6 . b9),
(b6 . b10) ) holds
b6 * (b7 [;] b4,b5) = b8 [;] (b6 . b4),
(b6 * b5)
theorem Th40: :: FINSEQOP:40
for
b1,
b2,
b3 being non
empty set for
b4 being
Element of
b3 for
b5 being
Function of
b1,
b3 for
b6 being
Function of
b3,
b2 for
b7 being
BinOp of
b3 for
b8 being
BinOp of
b2 st ( for
b9,
b10 being
Element of
b3 holds
b6 . (b7 . b9,b10) = b8 . (b6 . b9),
(b6 . b10) ) holds
b6 * (b7 [:] b5,b4) = b8 [:] (b6 * b5),
(b6 . b4)
theorem Th41: :: FINSEQOP:41
theorem Th42: :: FINSEQOP:42
theorem Th43: :: FINSEQOP:43
theorem Th44: :: FINSEQOP:44
theorem Th45: :: FINSEQOP:45
theorem Th46: :: FINSEQOP:46
theorem Th47: :: FINSEQOP:47
theorem Th48: :: FINSEQOP:48
theorem Th49: :: FINSEQOP:49
theorem Th50: :: FINSEQOP:50
theorem Th51: :: FINSEQOP:51
theorem Th52: :: FINSEQOP:52
theorem Th53: :: FINSEQOP:53
theorem Th54: :: FINSEQOP:54
theorem Th55: :: FINSEQOP:55
theorem Th56: :: FINSEQOP:56
theorem Th57: :: FINSEQOP:57
theorem Th58: :: FINSEQOP:58
theorem Th59: :: FINSEQOP:59
:: deftheorem Def1 defines is_an_inverseOp_wrt FINSEQOP:def 1 :
:: deftheorem Def2 defines having_an_inverseOp FINSEQOP:def 2 :
:: deftheorem Def3 defines the_inverseOp_wrt FINSEQOP:def 3 :
theorem Th60: :: FINSEQOP:60
canceled;
theorem Th61: :: FINSEQOP:61
canceled;
theorem Th62: :: FINSEQOP:62
canceled;
theorem Th63: :: FINSEQOP:63
theorem Th64: :: FINSEQOP:64
theorem Th65: :: FINSEQOP:65
theorem Th66: :: FINSEQOP:66
theorem Th67: :: FINSEQOP:67
theorem Th68: :: FINSEQOP:68
theorem Th69: :: FINSEQOP:69
theorem Th70: :: FINSEQOP:70
theorem Th71: :: FINSEQOP:71
theorem Th72: :: FINSEQOP:72
theorem Th73: :: FINSEQOP:73
theorem Th74: :: FINSEQOP:74
theorem Th75: :: FINSEQOP:75
theorem Th76: :: FINSEQOP:76
theorem Th77: :: FINSEQOP:77
theorem Th78: :: FINSEQOP:78
theorem Th79: :: FINSEQOP:79
theorem Th80: :: FINSEQOP:80
:: deftheorem Def4 defines * FINSEQOP:def 4 :
theorem Th81: :: FINSEQOP:81
canceled;
theorem Th82: :: FINSEQOP:82
theorem Th83: :: FINSEQOP:83
theorem Th84: :: FINSEQOP:84
for
b1,
b2,
b3,
b4,
b5 being non
empty set for
b6 being
Function of
[:b1,b2:],
b3 for
b7 being
Function of
b4,
b1 for
b8 being
Function of
b5,
b2 holds
b6 * b7,
b8 is
Function of
[:b4,b5:],
b3
theorem Th85: :: FINSEQOP:85
theorem Th86: :: FINSEQOP:86
for
b1,
b2,
b3,
b4,
b5 being non
empty set for
b6 being
Element of
b4 for
b7 being
Element of
b5 for
b8 being
Function of
[:b1,b2:],
b3 for
b9 being
Function of
b4,
b1 for
b10 being
Function of
b5,
b2 holds
(b8 * b9,b10) . b6,
b7 = b8 . (b9 . b6),
(b10 . b7)
theorem Th87: :: FINSEQOP:87
for
b1 being non
empty set for
b2,
b3 being
Element of
b1 for
b4 being
BinOp of
b1 for
b5 being
Function of
b1,
b1 holds
(
(b4 * (id b1),b5) . b2,
b3 = b4 . b2,
(b5 . b3) &
(b4 * b5,(id b1)) . b2,
b3 = b4 . (b5 . b2),
b3 )
theorem Th88: :: FINSEQOP:88
theorem Th89: :: FINSEQOP:89
theorem Th90: :: FINSEQOP:90
theorem Th91: :: FINSEQOP:91
theorem Th92: :: FINSEQOP:92
theorem Th93: :: FINSEQOP:93
theorem Th94: :: FINSEQOP:94
for
b1 being non
empty set for
b2,
b3 being
BinOp of
b1 st
b2 is
commutative &
b2 is
associative &
b2 has_a_unity &
b2 has_an_inverseOp &
b3 = b2 * (id b1),
(the_inverseOp_wrt b2) holds
for
b4,
b5,
b6,
b7 being
Element of
b1 holds
b2 . (b3 . b4,b5),
(b3 . b6,b7) = b3 . (b2 . b4,b6),
(b2 . b5,b7)