:: FREEALG semantic presentation
:: deftheorem Def1 defines missing_with_Nat FREEALG:def 1 :
Lemma2:
( not 0 in rng <*1*> & 0 in rng <*0*> )
:: deftheorem Def2 defines with_zero FREEALG:def 2 :
:: deftheorem Def3 FREEALG:def 3 :
canceled;
:: deftheorem Def4 defines oper FREEALG:def 4 :
:: deftheorem Def5 defines GeneratorSet FREEALG:def 5 :
:: deftheorem Def6 defines free FREEALG:def 6 :
:: deftheorem Def7 defines free FREEALG:def 7 :
theorem Th1: :: FREEALG:1
:: deftheorem Def8 defines REL FREEALG:def 8 :
:: deftheorem Def9 defines DTConUA FREEALG:def 9 :
theorem Th2: :: FREEALG:2
theorem Th3: :: FREEALG:3
:: deftheorem Def10 defines Sym FREEALG:def 10 :
definition
let c1 be non
empty FinSequence of
NAT ;
let c2 be non
empty missing_with_Nat set ;
let c3 be
Nat;
assume E12:
c3 in dom c1
;
func FreeOpNSG c3,
c1,
c2 -> non
empty homogeneous quasi_total PartFunc of
(TS (DTConUA a1,a2)) * ,
TS (DTConUA a1,a2) means :
Def11:
:: FREEALG:def 11
(
dom a4 = (a1 /. a3) -tuples_on (TS (DTConUA a1,a2)) & ( for
b1 being
FinSequence of
TS (DTConUA a1,a2) st
b1 in dom a4 holds
a4 . b1 = (Sym a3,a1,a2) -tree b1 ) );
existence
ex b1 being non empty homogeneous quasi_total PartFunc of (TS (DTConUA c1,c2)) * , TS (DTConUA c1,c2) st
( dom b1 = (c1 /. c3) -tuples_on (TS (DTConUA c1,c2)) & ( for b2 being FinSequence of TS (DTConUA c1,c2) st b2 in dom b1 holds
b1 . b2 = (Sym c3,c1,c2) -tree b2 ) )
uniqueness
for b1, b2 being non empty homogeneous quasi_total PartFunc of (TS (DTConUA c1,c2)) * , TS (DTConUA c1,c2) st dom b1 = (c1 /. c3) -tuples_on (TS (DTConUA c1,c2)) & ( for b3 being FinSequence of TS (DTConUA c1,c2) st b3 in dom b1 holds
b1 . b3 = (Sym c3,c1,c2) -tree b3 ) & dom b2 = (c1 /. c3) -tuples_on (TS (DTConUA c1,c2)) & ( for b3 being FinSequence of TS (DTConUA c1,c2) st b3 in dom b2 holds
b2 . b3 = (Sym c3,c1,c2) -tree b3 ) holds
b1 = b2
end;
:: deftheorem Def11 defines FreeOpNSG FREEALG:def 11 :
definition
let c1 be non
empty FinSequence of
NAT ;
let c2 be non
empty missing_with_Nat set ;
func FreeOpSeqNSG c1,
c2 -> PFuncFinSequence of
(TS (DTConUA a1,a2)) means :
Def12:
:: FREEALG:def 12
(
len a3 = len a1 & ( for
b1 being
Nat st
b1 in dom a3 holds
a3 . b1 = FreeOpNSG b1,
a1,
a2 ) );
existence
ex b1 being PFuncFinSequence of (TS (DTConUA c1,c2)) st
( len b1 = len c1 & ( for b2 being Nat st b2 in dom b1 holds
b1 . b2 = FreeOpNSG b2,c1,c2 ) )
uniqueness
for b1, b2 being PFuncFinSequence of (TS (DTConUA c1,c2)) st len b1 = len c1 & ( for b3 being Nat st b3 in dom b1 holds
b1 . b3 = FreeOpNSG b3,c1,c2 ) & len b2 = len c1 & ( for b3 being Nat st b3 in dom b2 holds
b2 . b3 = FreeOpNSG b3,c1,c2 ) holds
b1 = b2
end;
:: deftheorem Def12 defines FreeOpSeqNSG FREEALG:def 12 :
:: deftheorem Def13 defines FreeUnivAlgNSG FREEALG:def 13 :
theorem Th4: :: FREEALG:4
:: deftheorem Def14 defines FreeGenSetNSG FREEALG:def 14 :
theorem Th5: :: FREEALG:5
:: deftheorem Def15 defines pi FREEALG:def 15 :
:: deftheorem Def16 defines @ FREEALG:def 16 :
theorem Th6: :: FREEALG:6
definition
let c1 be non
empty with_zero FinSequence of
NAT ;
let c2 be
missing_with_Nat set ;
let c3 be
Nat;
assume E19:
c3 in dom c1
;
func FreeOpZAO c3,
c1,
c2 -> non
empty homogeneous quasi_total PartFunc of
(TS (DTConUA a1,a2)) * ,
TS (DTConUA a1,a2) means :
Def17:
:: FREEALG:def 17
(
dom a4 = (a1 /. a3) -tuples_on (TS (DTConUA a1,a2)) & ( for
b1 being
FinSequence of
TS (DTConUA a1,a2) st
b1 in dom a4 holds
a4 . b1 = (Sym a3,a1,a2) -tree b1 ) );
existence
ex b1 being non empty homogeneous quasi_total PartFunc of (TS (DTConUA c1,c2)) * , TS (DTConUA c1,c2) st
( dom b1 = (c1 /. c3) -tuples_on (TS (DTConUA c1,c2)) & ( for b2 being FinSequence of TS (DTConUA c1,c2) st b2 in dom b1 holds
b1 . b2 = (Sym c3,c1,c2) -tree b2 ) )
uniqueness
for b1, b2 being non empty homogeneous quasi_total PartFunc of (TS (DTConUA c1,c2)) * , TS (DTConUA c1,c2) st dom b1 = (c1 /. c3) -tuples_on (TS (DTConUA c1,c2)) & ( for b3 being FinSequence of TS (DTConUA c1,c2) st b3 in dom b1 holds
b1 . b3 = (Sym c3,c1,c2) -tree b3 ) & dom b2 = (c1 /. c3) -tuples_on (TS (DTConUA c1,c2)) & ( for b3 being FinSequence of TS (DTConUA c1,c2) st b3 in dom b2 holds
b2 . b3 = (Sym c3,c1,c2) -tree b3 ) holds
b1 = b2
end;
:: deftheorem Def17 defines FreeOpZAO FREEALG:def 17 :
definition
let c1 be non
empty with_zero FinSequence of
NAT ;
let c2 be
missing_with_Nat set ;
func FreeOpSeqZAO c1,
c2 -> PFuncFinSequence of
(TS (DTConUA a1,a2)) means :
Def18:
:: FREEALG:def 18
(
len a3 = len a1 & ( for
b1 being
Nat st
b1 in dom a3 holds
a3 . b1 = FreeOpZAO b1,
a1,
a2 ) );
existence
ex b1 being PFuncFinSequence of (TS (DTConUA c1,c2)) st
( len b1 = len c1 & ( for b2 being Nat st b2 in dom b1 holds
b1 . b2 = FreeOpZAO b2,c1,c2 ) )
uniqueness
for b1, b2 being PFuncFinSequence of (TS (DTConUA c1,c2)) st len b1 = len c1 & ( for b3 being Nat st b3 in dom b1 holds
b1 . b3 = FreeOpZAO b3,c1,c2 ) & len b2 = len c1 & ( for b3 being Nat st b3 in dom b2 holds
b2 . b3 = FreeOpZAO b3,c1,c2 ) holds
b1 = b2
end;
:: deftheorem Def18 defines FreeOpSeqZAO FREEALG:def 18 :
:: deftheorem Def19 defines FreeUnivAlgZAO FREEALG:def 19 :
theorem Th7: :: FREEALG:7
theorem Th8: :: FREEALG:8
theorem Th9: :: FREEALG:9
:: deftheorem Def20 defines FreeGenSetZAO FREEALG:def 20 :
:: deftheorem Def21 defines pi FREEALG:def 21 :
theorem Th10: :: FREEALG:10