:: JORDAN15 semantic presentation
theorem Th1: :: JORDAN15:1
theorem Th2: :: JORDAN15:2
theorem Th3: :: JORDAN15:3
theorem Th4: :: JORDAN15:4
theorem Th5: :: JORDAN15:5
theorem Th6: :: JORDAN15:6
theorem Th7: :: JORDAN15:7
for
b1 being
Go-board for
b2,
b3,
b4,
b5,
b6 being
Nat st 1
<= b2 &
b2 <= len b1 & 1
<= b3 &
b3 <= b5 &
b5 <= b6 &
b6 <= b4 &
b4 <= width b1 holds
LSeg (b1 * b2,b5),
(b1 * b2,b6) c= LSeg (b1 * b2,b3),
(b1 * b2,b4)
theorem Th8: :: JORDAN15:8
for
b1 being
Go-board for
b2,
b3,
b4,
b5,
b6 being
Nat st 1
<= b2 &
b2 <= width b1 & 1
<= b3 &
b3 <= b5 &
b5 <= b6 &
b6 <= b4 &
b4 <= len b1 holds
LSeg (b1 * b5,b2),
(b1 * b6,b2) c= LSeg (b1 * b3,b2),
(b1 * b4,b2)
theorem Th9: :: JORDAN15:9
theorem Th10: :: JORDAN15:10
theorem Th11: :: JORDAN15:11
for
b1 being
Nat for
b2 being
connected compact non
horizontal non
vertical Subset of
(TOP-REAL 2) for
b3,
b4,
b5 being
Nat st 1
<= b3 &
b3 <= len (Gauge b2,b1) & 1
<= b4 &
b4 <= b5 &
b5 <= width (Gauge b2,b1) &
(Gauge b2,b1) * b3,
b4 in L~ (Lower_Seq b2,b1) holds
ex
b6 being
Nat st
(
b4 <= b6 &
b6 <= b5 &
(LSeg ((Gauge b2,b1) * b3,b6),((Gauge b2,b1) * b3,b5)) /\ (L~ (Lower_Seq b2,b1)) = {((Gauge b2,b1) * b3,b6)} )
theorem Th12: :: JORDAN15:12
for
b1 being
Nat for
b2 being
connected compact non
horizontal non
vertical Subset of
(TOP-REAL 2) for
b3,
b4,
b5 being
Nat st 1
<= b3 &
b3 <= len (Gauge b2,b1) & 1
<= b4 &
b4 <= b5 &
b5 <= width (Gauge b2,b1) &
(Gauge b2,b1) * b3,
b5 in L~ (Upper_Seq b2,b1) holds
ex
b6 being
Nat st
(
b4 <= b6 &
b6 <= b5 &
(LSeg ((Gauge b2,b1) * b3,b4),((Gauge b2,b1) * b3,b6)) /\ (L~ (Upper_Seq b2,b1)) = {((Gauge b2,b1) * b3,b6)} )
theorem Th13: :: JORDAN15:13
for
b1 being
Nat for
b2 being
connected compact non
horizontal non
vertical Subset of
(TOP-REAL 2) for
b3,
b4,
b5 being
Nat st 1
<= b3 &
b3 <= len (Gauge b2,b1) & 1
<= b4 &
b4 <= b5 &
b5 <= width (Gauge b2,b1) &
(Gauge b2,b1) * b3,
b4 in L~ (Lower_Seq b2,b1) &
(Gauge b2,b1) * b3,
b5 in L~ (Upper_Seq b2,b1) holds
ex
b6,
b7 being
Nat st
(
b4 <= b6 &
b6 <= b7 &
b7 <= b5 &
(LSeg ((Gauge b2,b1) * b3,b6),((Gauge b2,b1) * b3,b7)) /\ (L~ (Lower_Seq b2,b1)) = {((Gauge b2,b1) * b3,b6)} &
(LSeg ((Gauge b2,b1) * b3,b6),((Gauge b2,b1) * b3,b7)) /\ (L~ (Upper_Seq b2,b1)) = {((Gauge b2,b1) * b3,b7)} )
theorem Th14: :: JORDAN15:14
for
b1 being
Nat for
b2 being
connected compact non
horizontal non
vertical Subset of
(TOP-REAL 2) for
b3,
b4,
b5 being
Nat st 1
<= b4 &
b4 <= b5 &
b5 <= len (Gauge b2,b1) & 1
<= b3 &
b3 <= width (Gauge b2,b1) &
(Gauge b2,b1) * b4,
b3 in L~ (Lower_Seq b2,b1) holds
ex
b6 being
Nat st
(
b4 <= b6 &
b6 <= b5 &
(LSeg ((Gauge b2,b1) * b6,b3),((Gauge b2,b1) * b5,b3)) /\ (L~ (Lower_Seq b2,b1)) = {((Gauge b2,b1) * b6,b3)} )
theorem Th15: :: JORDAN15:15
for
b1 being
Nat for
b2 being
connected compact non
horizontal non
vertical Subset of
(TOP-REAL 2) for
b3,
b4,
b5 being
Nat st 1
<= b4 &
b4 <= b5 &
b5 <= len (Gauge b2,b1) & 1
<= b3 &
b3 <= width (Gauge b2,b1) &
(Gauge b2,b1) * b5,
b3 in L~ (Upper_Seq b2,b1) holds
ex
b6 being
Nat st
(
b4 <= b6 &
b6 <= b5 &
(LSeg ((Gauge b2,b1) * b4,b3),((Gauge b2,b1) * b6,b3)) /\ (L~ (Upper_Seq b2,b1)) = {((Gauge b2,b1) * b6,b3)} )
theorem Th16: :: JORDAN15:16
for
b1 being
Nat for
b2 being
connected compact non
horizontal non
vertical Subset of
(TOP-REAL 2) for
b3,
b4,
b5 being
Nat st 1
<= b4 &
b4 <= b5 &
b5 <= len (Gauge b2,b1) & 1
<= b3 &
b3 <= width (Gauge b2,b1) &
(Gauge b2,b1) * b4,
b3 in L~ (Lower_Seq b2,b1) &
(Gauge b2,b1) * b5,
b3 in L~ (Upper_Seq b2,b1) holds
ex
b6,
b7 being
Nat st
(
b4 <= b6 &
b6 <= b7 &
b7 <= b5 &
(LSeg ((Gauge b2,b1) * b6,b3),((Gauge b2,b1) * b7,b3)) /\ (L~ (Lower_Seq b2,b1)) = {((Gauge b2,b1) * b6,b3)} &
(LSeg ((Gauge b2,b1) * b6,b3),((Gauge b2,b1) * b7,b3)) /\ (L~ (Upper_Seq b2,b1)) = {((Gauge b2,b1) * b7,b3)} )
theorem Th17: :: JORDAN15:17
for
b1 being
Nat for
b2 being
connected compact non
horizontal non
vertical Subset of
(TOP-REAL 2) for
b3,
b4,
b5 being
Nat st 1
<= b3 &
b3 <= len (Gauge b2,b1) & 1
<= b4 &
b4 <= b5 &
b5 <= width (Gauge b2,b1) &
(Gauge b2,b1) * b3,
b4 in L~ (Upper_Seq b2,b1) holds
ex
b6 being
Nat st
(
b4 <= b6 &
b6 <= b5 &
(LSeg ((Gauge b2,b1) * b3,b6),((Gauge b2,b1) * b3,b5)) /\ (L~ (Upper_Seq b2,b1)) = {((Gauge b2,b1) * b3,b6)} )
theorem Th18: :: JORDAN15:18
for
b1 being
Nat for
b2 being
connected compact non
horizontal non
vertical Subset of
(TOP-REAL 2) for
b3,
b4,
b5 being
Nat st 1
<= b3 &
b3 <= len (Gauge b2,b1) & 1
<= b4 &
b4 <= b5 &
b5 <= width (Gauge b2,b1) &
(Gauge b2,b1) * b3,
b5 in L~ (Lower_Seq b2,b1) holds
ex
b6 being
Nat st
(
b4 <= b6 &
b6 <= b5 &
(LSeg ((Gauge b2,b1) * b3,b4),((Gauge b2,b1) * b3,b6)) /\ (L~ (Lower_Seq b2,b1)) = {((Gauge b2,b1) * b3,b6)} )
theorem Th19: :: JORDAN15:19
for
b1 being
Nat for
b2 being
connected compact non
horizontal non
vertical Subset of
(TOP-REAL 2) for
b3,
b4,
b5 being
Nat st 1
<= b3 &
b3 <= len (Gauge b2,b1) & 1
<= b4 &
b4 <= b5 &
b5 <= width (Gauge b2,b1) &
(Gauge b2,b1) * b3,
b4 in L~ (Upper_Seq b2,b1) &
(Gauge b2,b1) * b3,
b5 in L~ (Lower_Seq b2,b1) holds
ex
b6,
b7 being
Nat st
(
b4 <= b6 &
b6 <= b7 &
b7 <= b5 &
(LSeg ((Gauge b2,b1) * b3,b6),((Gauge b2,b1) * b3,b7)) /\ (L~ (Upper_Seq b2,b1)) = {((Gauge b2,b1) * b3,b6)} &
(LSeg ((Gauge b2,b1) * b3,b6),((Gauge b2,b1) * b3,b7)) /\ (L~ (Lower_Seq b2,b1)) = {((Gauge b2,b1) * b3,b7)} )
theorem Th20: :: JORDAN15:20
for
b1 being
Nat for
b2 being
connected compact non
horizontal non
vertical Subset of
(TOP-REAL 2) for
b3,
b4,
b5 being
Nat st 1
<= b4 &
b4 <= b5 &
b5 <= len (Gauge b2,b1) & 1
<= b3 &
b3 <= width (Gauge b2,b1) &
(Gauge b2,b1) * b4,
b3 in L~ (Upper_Seq b2,b1) holds
ex
b6 being
Nat st
(
b4 <= b6 &
b6 <= b5 &
(LSeg ((Gauge b2,b1) * b6,b3),((Gauge b2,b1) * b5,b3)) /\ (L~ (Upper_Seq b2,b1)) = {((Gauge b2,b1) * b6,b3)} )
theorem Th21: :: JORDAN15:21
for
b1 being
Nat for
b2 being
connected compact non
horizontal non
vertical Subset of
(TOP-REAL 2) for
b3,
b4,
b5 being
Nat st 1
<= b4 &
b4 <= b5 &
b5 <= len (Gauge b2,b1) & 1
<= b3 &
b3 <= width (Gauge b2,b1) &
(Gauge b2,b1) * b5,
b3 in L~ (Lower_Seq b2,b1) holds
ex
b6 being
Nat st
(
b4 <= b6 &
b6 <= b5 &
(LSeg ((Gauge b2,b1) * b4,b3),((Gauge b2,b1) * b6,b3)) /\ (L~ (Lower_Seq b2,b1)) = {((Gauge b2,b1) * b6,b3)} )
theorem Th22: :: JORDAN15:22
for
b1 being
Nat for
b2 being
connected compact non
horizontal non
vertical Subset of
(TOP-REAL 2) for
b3,
b4,
b5 being
Nat st 1
<= b4 &
b4 <= b5 &
b5 <= len (Gauge b2,b1) & 1
<= b3 &
b3 <= width (Gauge b2,b1) &
(Gauge b2,b1) * b4,
b3 in L~ (Upper_Seq b2,b1) &
(Gauge b2,b1) * b5,
b3 in L~ (Lower_Seq b2,b1) holds
ex
b6,
b7 being
Nat st
(
b4 <= b6 &
b6 <= b7 &
b7 <= b5 &
(LSeg ((Gauge b2,b1) * b6,b3),((Gauge b2,b1) * b7,b3)) /\ (L~ (Upper_Seq b2,b1)) = {((Gauge b2,b1) * b6,b3)} &
(LSeg ((Gauge b2,b1) * b6,b3),((Gauge b2,b1) * b7,b3)) /\ (L~ (Lower_Seq b2,b1)) = {((Gauge b2,b1) * b7,b3)} )
theorem Th23: :: JORDAN15:23
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5 being
Nat st 1
< b3 &
b3 < len (Gauge b2,b1) & 1
<= b4 &
b4 <= b5 &
b5 <= width (Gauge b2,b1) &
(Gauge b2,b1) * b3,
b5 in L~ (Upper_Seq b2,b1) &
(Gauge b2,b1) * b3,
b4 in L~ (Lower_Seq b2,b1) holds
LSeg ((Gauge b2,b1) * b3,b4),
((Gauge b2,b1) * b3,b5) meets Lower_Arc b2
theorem Th24: :: JORDAN15:24
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5 being
Nat st 1
< b3 &
b3 < len (Gauge b2,b1) & 1
<= b4 &
b4 <= b5 &
b5 <= width (Gauge b2,b1) &
(Gauge b2,b1) * b3,
b5 in L~ (Upper_Seq b2,b1) &
(Gauge b2,b1) * b3,
b4 in L~ (Lower_Seq b2,b1) holds
LSeg ((Gauge b2,b1) * b3,b4),
((Gauge b2,b1) * b3,b5) meets Upper_Arc b2
theorem Th25: :: JORDAN15:25
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5 being
Nat st 1
< b3 &
b3 < len (Gauge b2,b1) & 1
<= b4 &
b4 <= b5 &
b5 <= width (Gauge b2,b1) &
b1 > 0 &
(Gauge b2,b1) * b3,
b5 in Upper_Arc (L~ (Cage b2,b1)) &
(Gauge b2,b1) * b3,
b4 in Lower_Arc (L~ (Cage b2,b1)) holds
LSeg ((Gauge b2,b1) * b3,b4),
((Gauge b2,b1) * b3,b5) meets Lower_Arc b2
theorem Th26: :: JORDAN15:26
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5 being
Nat st 1
< b3 &
b3 < len (Gauge b2,b1) & 1
<= b4 &
b4 <= b5 &
b5 <= width (Gauge b2,b1) &
b1 > 0 &
(Gauge b2,b1) * b3,
b5 in Upper_Arc (L~ (Cage b2,b1)) &
(Gauge b2,b1) * b3,
b4 in Lower_Arc (L~ (Cage b2,b1)) holds
LSeg ((Gauge b2,b1) * b3,b4),
((Gauge b2,b1) * b3,b5) meets Upper_Arc b2
theorem Th27: :: JORDAN15:27
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4 being
Nat st 1
<= b3 &
b3 <= b4 &
b4 <= width (Gauge b2,(b1 + 1)) &
(Gauge b2,(b1 + 1)) * (Center (Gauge b2,(b1 + 1))),
b4 in Upper_Arc (L~ (Cage b2,(b1 + 1))) &
(Gauge b2,(b1 + 1)) * (Center (Gauge b2,(b1 + 1))),
b3 in Lower_Arc (L~ (Cage b2,(b1 + 1))) holds
LSeg ((Gauge b2,(b1 + 1)) * (Center (Gauge b2,(b1 + 1))),b3),
((Gauge b2,(b1 + 1)) * (Center (Gauge b2,(b1 + 1))),b4) meets Lower_Arc b2
theorem Th28: :: JORDAN15:28
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4 being
Nat st 1
<= b3 &
b3 <= b4 &
b4 <= width (Gauge b2,(b1 + 1)) &
(Gauge b2,(b1 + 1)) * (Center (Gauge b2,(b1 + 1))),
b4 in Upper_Arc (L~ (Cage b2,(b1 + 1))) &
(Gauge b2,(b1 + 1)) * (Center (Gauge b2,(b1 + 1))),
b3 in Lower_Arc (L~ (Cage b2,(b1 + 1))) holds
LSeg ((Gauge b2,(b1 + 1)) * (Center (Gauge b2,(b1 + 1))),b3),
((Gauge b2,(b1 + 1)) * (Center (Gauge b2,(b1 + 1))),b4) meets Upper_Arc b2
theorem Th29: :: JORDAN15:29
for
b1 being
Nat for
b2 being
connected compact non
horizontal non
vertical Subset of
(TOP-REAL 2) for
b3,
b4,
b5 being
Nat st 1
< b4 &
b5 < len (Gauge b2,b1) & 1
<= b3 &
b3 <= width (Gauge b2,b1) &
(Gauge b2,b1) * b5,
b3 in L~ (Upper_Seq b2,b1) &
(Gauge b2,b1) * b4,
b3 in L~ (Lower_Seq b2,b1) holds
b4 <> b5
theorem Th30: :: JORDAN15:30
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5 being
Nat st 1
< b4 &
b4 <= b5 &
b5 < len (Gauge b2,b1) & 1
<= b3 &
b3 <= width (Gauge b2,b1) &
(LSeg ((Gauge b2,b1) * b4,b3),((Gauge b2,b1) * b5,b3)) /\ (L~ (Upper_Seq b2,b1)) = {((Gauge b2,b1) * b5,b3)} &
(LSeg ((Gauge b2,b1) * b4,b3),((Gauge b2,b1) * b5,b3)) /\ (L~ (Lower_Seq b2,b1)) = {((Gauge b2,b1) * b4,b3)} holds
LSeg ((Gauge b2,b1) * b4,b3),
((Gauge b2,b1) * b5,b3) meets Lower_Arc b2
theorem Th31: :: JORDAN15:31
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5 being
Nat st 1
< b4 &
b4 <= b5 &
b5 < len (Gauge b2,b1) & 1
<= b3 &
b3 <= width (Gauge b2,b1) &
(LSeg ((Gauge b2,b1) * b4,b3),((Gauge b2,b1) * b5,b3)) /\ (L~ (Upper_Seq b2,b1)) = {((Gauge b2,b1) * b5,b3)} &
(LSeg ((Gauge b2,b1) * b4,b3),((Gauge b2,b1) * b5,b3)) /\ (L~ (Lower_Seq b2,b1)) = {((Gauge b2,b1) * b4,b3)} holds
LSeg ((Gauge b2,b1) * b4,b3),
((Gauge b2,b1) * b5,b3) meets Upper_Arc b2
theorem Th32: :: JORDAN15:32
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5 being
Nat st 1
< b4 &
b4 <= b5 &
b5 < len (Gauge b2,b1) & 1
<= b3 &
b3 <= width (Gauge b2,b1) &
(Gauge b2,b1) * b5,
b3 in L~ (Upper_Seq b2,b1) &
(Gauge b2,b1) * b4,
b3 in L~ (Lower_Seq b2,b1) holds
LSeg ((Gauge b2,b1) * b4,b3),
((Gauge b2,b1) * b5,b3) meets Lower_Arc b2
theorem Th33: :: JORDAN15:33
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5 being
Nat st 1
< b4 &
b4 <= b5 &
b5 < len (Gauge b2,b1) & 1
<= b3 &
b3 <= width (Gauge b2,b1) &
(Gauge b2,b1) * b5,
b3 in L~ (Upper_Seq b2,b1) &
(Gauge b2,b1) * b4,
b3 in L~ (Lower_Seq b2,b1) holds
LSeg ((Gauge b2,b1) * b4,b3),
((Gauge b2,b1) * b5,b3) meets Upper_Arc b2
theorem Th34: :: JORDAN15:34
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5 being
Nat st 1
< b4 &
b4 <= b5 &
b5 < len (Gauge b2,b1) & 1
<= b3 &
b3 <= width (Gauge b2,b1) &
b1 > 0 &
(Gauge b2,b1) * b5,
b3 in Upper_Arc (L~ (Cage b2,b1)) &
(Gauge b2,b1) * b4,
b3 in Lower_Arc (L~ (Cage b2,b1)) holds
LSeg ((Gauge b2,b1) * b4,b3),
((Gauge b2,b1) * b5,b3) meets Lower_Arc b2
theorem Th35: :: JORDAN15:35
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5 being
Nat st 1
< b4 &
b4 <= b5 &
b5 < len (Gauge b2,b1) & 1
<= b3 &
b3 <= width (Gauge b2,b1) &
b1 > 0 &
(Gauge b2,b1) * b5,
b3 in Upper_Arc (L~ (Cage b2,b1)) &
(Gauge b2,b1) * b4,
b3 in Lower_Arc (L~ (Cage b2,b1)) holds
LSeg ((Gauge b2,b1) * b4,b3),
((Gauge b2,b1) * b5,b3) meets Upper_Arc b2
theorem Th36: :: JORDAN15:36
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4 being
Nat st 1
< b3 &
b3 <= b4 &
b4 < len (Gauge b2,(b1 + 1)) &
(Gauge b2,(b1 + 1)) * b4,
(Center (Gauge b2,(b1 + 1))) in Upper_Arc (L~ (Cage b2,(b1 + 1))) &
(Gauge b2,(b1 + 1)) * b3,
(Center (Gauge b2,(b1 + 1))) in Lower_Arc (L~ (Cage b2,(b1 + 1))) holds
LSeg ((Gauge b2,(b1 + 1)) * b3,(Center (Gauge b2,(b1 + 1)))),
((Gauge b2,(b1 + 1)) * b4,(Center (Gauge b2,(b1 + 1)))) meets Lower_Arc b2
theorem Th37: :: JORDAN15:37
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4 being
Nat st 1
< b3 &
b3 <= b4 &
b4 < len (Gauge b2,(b1 + 1)) &
(Gauge b2,(b1 + 1)) * b4,
(Center (Gauge b2,(b1 + 1))) in Upper_Arc (L~ (Cage b2,(b1 + 1))) &
(Gauge b2,(b1 + 1)) * b3,
(Center (Gauge b2,(b1 + 1))) in Lower_Arc (L~ (Cage b2,(b1 + 1))) holds
LSeg ((Gauge b2,(b1 + 1)) * b3,(Center (Gauge b2,(b1 + 1)))),
((Gauge b2,(b1 + 1)) * b4,(Center (Gauge b2,(b1 + 1)))) meets Upper_Arc b2
theorem Th38: :: JORDAN15:38
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5 being
Nat st 1
< b4 &
b4 <= b5 &
b5 < len (Gauge b2,b1) & 1
<= b3 &
b3 <= width (Gauge b2,b1) &
(LSeg ((Gauge b2,b1) * b4,b3),((Gauge b2,b1) * b5,b3)) /\ (L~ (Upper_Seq b2,b1)) = {((Gauge b2,b1) * b4,b3)} &
(LSeg ((Gauge b2,b1) * b4,b3),((Gauge b2,b1) * b5,b3)) /\ (L~ (Lower_Seq b2,b1)) = {((Gauge b2,b1) * b5,b3)} holds
LSeg ((Gauge b2,b1) * b4,b3),
((Gauge b2,b1) * b5,b3) meets Lower_Arc b2
theorem Th39: :: JORDAN15:39
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5 being
Nat st 1
< b4 &
b4 <= b5 &
b5 < len (Gauge b2,b1) & 1
<= b3 &
b3 <= width (Gauge b2,b1) &
(LSeg ((Gauge b2,b1) * b4,b3),((Gauge b2,b1) * b5,b3)) /\ (L~ (Upper_Seq b2,b1)) = {((Gauge b2,b1) * b4,b3)} &
(LSeg ((Gauge b2,b1) * b4,b3),((Gauge b2,b1) * b5,b3)) /\ (L~ (Lower_Seq b2,b1)) = {((Gauge b2,b1) * b5,b3)} holds
LSeg ((Gauge b2,b1) * b4,b3),
((Gauge b2,b1) * b5,b3) meets Upper_Arc b2
theorem Th40: :: JORDAN15:40
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5 being
Nat st 1
< b4 &
b4 <= b5 &
b5 < len (Gauge b2,b1) & 1
<= b3 &
b3 <= width (Gauge b2,b1) &
(Gauge b2,b1) * b4,
b3 in L~ (Upper_Seq b2,b1) &
(Gauge b2,b1) * b5,
b3 in L~ (Lower_Seq b2,b1) holds
LSeg ((Gauge b2,b1) * b4,b3),
((Gauge b2,b1) * b5,b3) meets Lower_Arc b2
theorem Th41: :: JORDAN15:41
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5 being
Nat st 1
< b4 &
b4 <= b5 &
b5 < len (Gauge b2,b1) & 1
<= b3 &
b3 <= width (Gauge b2,b1) &
(Gauge b2,b1) * b4,
b3 in L~ (Upper_Seq b2,b1) &
(Gauge b2,b1) * b5,
b3 in L~ (Lower_Seq b2,b1) holds
LSeg ((Gauge b2,b1) * b4,b3),
((Gauge b2,b1) * b5,b3) meets Upper_Arc b2
theorem Th42: :: JORDAN15:42
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5 being
Nat st 1
< b4 &
b4 <= b5 &
b5 < len (Gauge b2,b1) & 1
<= b3 &
b3 <= width (Gauge b2,b1) &
b1 > 0 &
(Gauge b2,b1) * b4,
b3 in Upper_Arc (L~ (Cage b2,b1)) &
(Gauge b2,b1) * b5,
b3 in Lower_Arc (L~ (Cage b2,b1)) holds
LSeg ((Gauge b2,b1) * b4,b3),
((Gauge b2,b1) * b5,b3) meets Lower_Arc b2
theorem Th43: :: JORDAN15:43
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5 being
Nat st 1
< b4 &
b4 <= b5 &
b5 < len (Gauge b2,b1) & 1
<= b3 &
b3 <= width (Gauge b2,b1) &
b1 > 0 &
(Gauge b2,b1) * b4,
b3 in Upper_Arc (L~ (Cage b2,b1)) &
(Gauge b2,b1) * b5,
b3 in Lower_Arc (L~ (Cage b2,b1)) holds
LSeg ((Gauge b2,b1) * b4,b3),
((Gauge b2,b1) * b5,b3) meets Upper_Arc b2
theorem Th44: :: JORDAN15:44
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4 being
Nat st 1
< b3 &
b3 <= b4 &
b4 < len (Gauge b2,(b1 + 1)) &
(Gauge b2,(b1 + 1)) * b3,
(Center (Gauge b2,(b1 + 1))) in Upper_Arc (L~ (Cage b2,(b1 + 1))) &
(Gauge b2,(b1 + 1)) * b4,
(Center (Gauge b2,(b1 + 1))) in Lower_Arc (L~ (Cage b2,(b1 + 1))) holds
LSeg ((Gauge b2,(b1 + 1)) * b3,(Center (Gauge b2,(b1 + 1)))),
((Gauge b2,(b1 + 1)) * b4,(Center (Gauge b2,(b1 + 1)))) meets Lower_Arc b2
theorem Th45: :: JORDAN15:45
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4 being
Nat st 1
< b3 &
b3 <= b4 &
b4 < len (Gauge b2,(b1 + 1)) &
(Gauge b2,(b1 + 1)) * b3,
(Center (Gauge b2,(b1 + 1))) in Upper_Arc (L~ (Cage b2,(b1 + 1))) &
(Gauge b2,(b1 + 1)) * b4,
(Center (Gauge b2,(b1 + 1))) in Lower_Arc (L~ (Cage b2,(b1 + 1))) holds
LSeg ((Gauge b2,(b1 + 1)) * b3,(Center (Gauge b2,(b1 + 1)))),
((Gauge b2,(b1 + 1)) * b4,(Center (Gauge b2,(b1 + 1)))) meets Upper_Arc b2
theorem Th46: :: JORDAN15:46
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5,
b6 being
Nat st 1
< b3 &
b3 <= b4 &
b4 < len (Gauge b2,b1) & 1
<= b5 &
b5 <= b6 &
b6 <= width (Gauge b2,b1) &
((LSeg ((Gauge b2,b1) * b3,b5),((Gauge b2,b1) * b3,b6)) \/ (LSeg ((Gauge b2,b1) * b3,b6),((Gauge b2,b1) * b4,b6))) /\ (L~ (Upper_Seq b2,b1)) = {((Gauge b2,b1) * b4,b6)} &
((LSeg ((Gauge b2,b1) * b3,b5),((Gauge b2,b1) * b3,b6)) \/ (LSeg ((Gauge b2,b1) * b3,b6),((Gauge b2,b1) * b4,b6))) /\ (L~ (Lower_Seq b2,b1)) = {((Gauge b2,b1) * b3,b5)} holds
(LSeg ((Gauge b2,b1) * b3,b5),((Gauge b2,b1) * b3,b6)) \/ (LSeg ((Gauge b2,b1) * b3,b6),((Gauge b2,b1) * b4,b6)) meets Upper_Arc b2
theorem Th47: :: JORDAN15:47
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5,
b6 being
Nat st 1
< b3 &
b3 <= b4 &
b4 < len (Gauge b2,b1) & 1
<= b5 &
b5 <= b6 &
b6 <= width (Gauge b2,b1) &
((LSeg ((Gauge b2,b1) * b3,b5),((Gauge b2,b1) * b3,b6)) \/ (LSeg ((Gauge b2,b1) * b3,b6),((Gauge b2,b1) * b4,b6))) /\ (L~ (Upper_Seq b2,b1)) = {((Gauge b2,b1) * b4,b6)} &
((LSeg ((Gauge b2,b1) * b3,b5),((Gauge b2,b1) * b3,b6)) \/ (LSeg ((Gauge b2,b1) * b3,b6),((Gauge b2,b1) * b4,b6))) /\ (L~ (Lower_Seq b2,b1)) = {((Gauge b2,b1) * b3,b5)} holds
(LSeg ((Gauge b2,b1) * b3,b5),((Gauge b2,b1) * b3,b6)) \/ (LSeg ((Gauge b2,b1) * b3,b6),((Gauge b2,b1) * b4,b6)) meets Lower_Arc b2
theorem Th48: :: JORDAN15:48
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5,
b6 being
Nat st 1
< b4 &
b4 <= b3 &
b3 < len (Gauge b2,b1) & 1
<= b5 &
b5 <= b6 &
b6 <= width (Gauge b2,b1) &
((LSeg ((Gauge b2,b1) * b3,b5),((Gauge b2,b1) * b3,b6)) \/ (LSeg ((Gauge b2,b1) * b3,b6),((Gauge b2,b1) * b4,b6))) /\ (L~ (Upper_Seq b2,b1)) = {((Gauge b2,b1) * b4,b6)} &
((LSeg ((Gauge b2,b1) * b3,b5),((Gauge b2,b1) * b3,b6)) \/ (LSeg ((Gauge b2,b1) * b3,b6),((Gauge b2,b1) * b4,b6))) /\ (L~ (Lower_Seq b2,b1)) = {((Gauge b2,b1) * b3,b5)} holds
(LSeg ((Gauge b2,b1) * b3,b5),((Gauge b2,b1) * b3,b6)) \/ (LSeg ((Gauge b2,b1) * b3,b6),((Gauge b2,b1) * b4,b6)) meets Upper_Arc b2
theorem Th49: :: JORDAN15:49
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5,
b6 being
Nat st 1
< b4 &
b4 <= b3 &
b3 < len (Gauge b2,b1) & 1
<= b5 &
b5 <= b6 &
b6 <= width (Gauge b2,b1) &
((LSeg ((Gauge b2,b1) * b3,b5),((Gauge b2,b1) * b3,b6)) \/ (LSeg ((Gauge b2,b1) * b3,b6),((Gauge b2,b1) * b4,b6))) /\ (L~ (Upper_Seq b2,b1)) = {((Gauge b2,b1) * b4,b6)} &
((LSeg ((Gauge b2,b1) * b3,b5),((Gauge b2,b1) * b3,b6)) \/ (LSeg ((Gauge b2,b1) * b3,b6),((Gauge b2,b1) * b4,b6))) /\ (L~ (Lower_Seq b2,b1)) = {((Gauge b2,b1) * b3,b5)} holds
(LSeg ((Gauge b2,b1) * b3,b5),((Gauge b2,b1) * b3,b6)) \/ (LSeg ((Gauge b2,b1) * b3,b6),((Gauge b2,b1) * b4,b6)) meets Lower_Arc b2
theorem Th50: :: JORDAN15:50
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5,
b6 being
Nat st 1
< b3 &
b3 < len (Gauge b2,(b1 + 1)) & 1
< b4 &
b4 < len (Gauge b2,(b1 + 1)) & 1
<= b5 &
b5 <= b6 &
b6 <= width (Gauge b2,(b1 + 1)) &
(Gauge b2,(b1 + 1)) * b3,
b6 in Upper_Arc (L~ (Cage b2,(b1 + 1))) &
(Gauge b2,(b1 + 1)) * b4,
b5 in Lower_Arc (L~ (Cage b2,(b1 + 1))) holds
(LSeg ((Gauge b2,(b1 + 1)) * b4,b5),((Gauge b2,(b1 + 1)) * b4,b6)) \/ (LSeg ((Gauge b2,(b1 + 1)) * b4,b6),((Gauge b2,(b1 + 1)) * b3,b6)) meets Upper_Arc b2
theorem Th51: :: JORDAN15:51
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5,
b6 being
Nat st 1
< b3 &
b3 < len (Gauge b2,(b1 + 1)) & 1
< b4 &
b4 < len (Gauge b2,(b1 + 1)) & 1
<= b5 &
b5 <= b6 &
b6 <= width (Gauge b2,(b1 + 1)) &
(Gauge b2,(b1 + 1)) * b3,
b6 in Upper_Arc (L~ (Cage b2,(b1 + 1))) &
(Gauge b2,(b1 + 1)) * b4,
b5 in Lower_Arc (L~ (Cage b2,(b1 + 1))) holds
(LSeg ((Gauge b2,(b1 + 1)) * b4,b5),((Gauge b2,(b1 + 1)) * b4,b6)) \/ (LSeg ((Gauge b2,(b1 + 1)) * b4,b6),((Gauge b2,(b1 + 1)) * b3,b6)) meets Lower_Arc b2
theorem Th52: :: JORDAN15:52
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5 being
Nat st 1
< b3 &
b3 < len (Gauge b2,(b1 + 1)) & 1
<= b4 &
b4 <= b5 &
b5 <= width (Gauge b2,(b1 + 1)) &
(Gauge b2,(b1 + 1)) * b3,
b5 in Upper_Arc (L~ (Cage b2,(b1 + 1))) &
(Gauge b2,(b1 + 1)) * (Center (Gauge b2,(b1 + 1))),
b4 in Lower_Arc (L~ (Cage b2,(b1 + 1))) holds
(LSeg ((Gauge b2,(b1 + 1)) * (Center (Gauge b2,(b1 + 1))),b4),((Gauge b2,(b1 + 1)) * (Center (Gauge b2,(b1 + 1))),b5)) \/ (LSeg ((Gauge b2,(b1 + 1)) * (Center (Gauge b2,(b1 + 1))),b5),((Gauge b2,(b1 + 1)) * b3,b5)) meets Upper_Arc b2
theorem Th53: :: JORDAN15:53
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5 being
Nat st 1
< b3 &
b3 < len (Gauge b2,(b1 + 1)) & 1
<= b4 &
b4 <= b5 &
b5 <= width (Gauge b2,(b1 + 1)) &
(Gauge b2,(b1 + 1)) * b3,
b5 in Upper_Arc (L~ (Cage b2,(b1 + 1))) &
(Gauge b2,(b1 + 1)) * (Center (Gauge b2,(b1 + 1))),
b4 in Lower_Arc (L~ (Cage b2,(b1 + 1))) holds
(LSeg ((Gauge b2,(b1 + 1)) * (Center (Gauge b2,(b1 + 1))),b4),((Gauge b2,(b1 + 1)) * (Center (Gauge b2,(b1 + 1))),b5)) \/ (LSeg ((Gauge b2,(b1 + 1)) * (Center (Gauge b2,(b1 + 1))),b5),((Gauge b2,(b1 + 1)) * b3,b5)) meets Lower_Arc b2