:: JORDAN1E semantic presentation
theorem Th1: :: JORDAN1E:1
theorem Th2: :: JORDAN1E:2
theorem Th3: :: JORDAN1E:3
theorem Th4: :: JORDAN1E:4
theorem Th5: :: JORDAN1E:5
theorem Th6: :: JORDAN1E:6
theorem Th7: :: JORDAN1E:7
theorem Th8: :: JORDAN1E:8
theorem Th9: :: JORDAN1E:9
theorem Th10: :: JORDAN1E:10
for
b1,
b2,
b3,
b4 being
Nat st
b1 + b2 = b3 + b4 &
b1 <= b3 &
b2 <= b4 holds
b1 = b3
theorem Th11: :: JORDAN1E:11
:: deftheorem Def1 defines Upper_Seq JORDAN1E:def 1 :
theorem Th12: :: JORDAN1E:12
:: deftheorem Def2 defines Lower_Seq JORDAN1E:def 2 :
theorem Th13: :: JORDAN1E:13
registration
let c1 be
compact non
horizontal non
vertical Subset of
(TOP-REAL 2);
let c2 be
Nat;
cluster Upper_Seq a1,
a2 -> non
empty one-to-one special unfolded s.n.c. ;
coherence
( Upper_Seq c1,c2 is one-to-one & Upper_Seq c1,c2 is special & Upper_Seq c1,c2 is unfolded & Upper_Seq c1,c2 is s.n.c. )
cluster Lower_Seq a1,
a2 -> non
empty one-to-one special unfolded s.n.c. ;
coherence
( Lower_Seq c1,c2 is one-to-one & Lower_Seq c1,c2 is special & Lower_Seq c1,c2 is unfolded & Lower_Seq c1,c2 is s.n.c. )
end;
theorem Th14: :: JORDAN1E:14
theorem Th15: :: JORDAN1E:15
theorem Th16: :: JORDAN1E:16
theorem Th17: :: JORDAN1E:17
theorem Th18: :: JORDAN1E:18
theorem Th19: :: JORDAN1E:19
theorem Th20: :: JORDAN1E:20
theorem Th21: :: JORDAN1E:21
theorem Th22: :: JORDAN1E:22
theorem Th23: :: JORDAN1E:23
theorem Th24: :: JORDAN1E:24
theorem Th25: :: JORDAN1E:25
theorem Th26: :: JORDAN1E:26