:: LIMFUNC1 semantic presentation
Lemma1:
(- 1) * (- 1) = 1
;
Lemma2:
for b1, b2, b3 being real number st 0 < b1 & b2 <= b3 holds
( b2 - b1 < b3 & b2 < b3 + b1 )
Lemma3:
for b1 being Real_Sequence
for b2, b3 being PartFunc of REAL , REAL st rng b1 c= dom (b2 + b3) holds
( dom (b2 + b3) = (dom b2) /\ (dom b3) & rng b1 c= dom b2 & rng b1 c= dom b3 )
Lemma4:
for b1 being Real_Sequence
for b2, b3 being PartFunc of REAL , REAL st rng b1 c= dom (b2 (#) b3) holds
( dom (b2 (#) b3) = (dom b2) /\ (dom b3) & rng b1 c= dom b2 & rng b1 c= dom b3 )
Lemma5:
for b1, b2, b3, b4 being real number st 0 <= b1 & b1 < b2 & 0 < b3 & b3 <= b4 holds
b1 * b3 < b2 * b4
by XREAL_1:99;
:: deftheorem Def1 defines left_closed_halfline LIMFUNC1:def 1 :
:: deftheorem Def2 defines right_closed_halfline LIMFUNC1:def 2 :
:: deftheorem Def3 defines right_open_halfline LIMFUNC1:def 3 :
theorem Th1: :: LIMFUNC1:1
canceled;
theorem Th2: :: LIMFUNC1:2
canceled;
theorem Th3: :: LIMFUNC1:3
canceled;
theorem Th4: :: LIMFUNC1:4
canceled;
theorem Th5: :: LIMFUNC1:5
canceled;
theorem Th6: :: LIMFUNC1:6
canceled;
theorem Th7: :: LIMFUNC1:7
canceled;
theorem Th8: :: LIMFUNC1:8
theorem Th9: :: LIMFUNC1:9
theorem Th10: :: LIMFUNC1:10
theorem Th11: :: LIMFUNC1:11
theorem Th12: :: LIMFUNC1:12
theorem Th13: :: LIMFUNC1:13
theorem Th14: :: LIMFUNC1:14
theorem Th15: :: LIMFUNC1:15
theorem Th16: :: LIMFUNC1:16
theorem Th17: :: LIMFUNC1:17
theorem Th18: :: LIMFUNC1:18
theorem Th19: :: LIMFUNC1:19
theorem Th20: :: LIMFUNC1:20
theorem Th21: :: LIMFUNC1:21
theorem Th22: :: LIMFUNC1:22
theorem Th23: :: LIMFUNC1:23
theorem Th24: :: LIMFUNC1:24
theorem Th25: :: LIMFUNC1:25
theorem Th26: :: LIMFUNC1:26
theorem Th27: :: LIMFUNC1:27
theorem Th28: :: LIMFUNC1:28
theorem Th29: :: LIMFUNC1:29
theorem Th30: :: LIMFUNC1:30
:: deftheorem Def4 defines divergent_to+infty LIMFUNC1:def 4 :
:: deftheorem Def5 defines divergent_to-infty LIMFUNC1:def 5 :
theorem Th31: :: LIMFUNC1:31
canceled;
theorem Th32: :: LIMFUNC1:32
canceled;
theorem Th33: :: LIMFUNC1:33
theorem Th34: :: LIMFUNC1:34
theorem Th35: :: LIMFUNC1:35
theorem Th36: :: LIMFUNC1:36
theorem Th37: :: LIMFUNC1:37
theorem Th38: :: LIMFUNC1:38
theorem Th39: :: LIMFUNC1:39
theorem Th40: :: LIMFUNC1:40
theorem Th41: :: LIMFUNC1:41
theorem Th42: :: LIMFUNC1:42
theorem Th43: :: LIMFUNC1:43
theorem Th44: :: LIMFUNC1:44
theorem Th45: :: LIMFUNC1:45
theorem Th46: :: LIMFUNC1:46
theorem Th47: :: LIMFUNC1:47
set c1 = incl NAT ;
Lemma25:
for b1 being Nat holds (incl NAT ) . b1 = b1
by FUNCT_1:35;
theorem Th48: :: LIMFUNC1:48
theorem Th49: :: LIMFUNC1:49
theorem Th50: :: LIMFUNC1:50
theorem Th51: :: LIMFUNC1:51
theorem Th52: :: LIMFUNC1:52
theorem Th53: :: LIMFUNC1:53
theorem Th54: :: LIMFUNC1:54
theorem Th55: :: LIMFUNC1:55
theorem Th56: :: LIMFUNC1:56
theorem Th57: :: LIMFUNC1:57
theorem Th58: :: LIMFUNC1:58
theorem Th59: :: LIMFUNC1:59
theorem Th60: :: LIMFUNC1:60
theorem Th61: :: LIMFUNC1:61
theorem Th62: :: LIMFUNC1:62
theorem Th63: :: LIMFUNC1:63
theorem Th64: :: LIMFUNC1:64
theorem Th65: :: LIMFUNC1:65
theorem Th66: :: LIMFUNC1:66
theorem Th67: :: LIMFUNC1:67
theorem Th68: :: LIMFUNC1:68
theorem Th69: :: LIMFUNC1:69
theorem Th70: :: LIMFUNC1:70
:: deftheorem Def6 defines convergent_in+infty LIMFUNC1:def 6 :
:: deftheorem Def7 defines divergent_in+infty_to+infty LIMFUNC1:def 7 :
:: deftheorem Def8 defines divergent_in+infty_to-infty LIMFUNC1:def 8 :
:: deftheorem Def9 defines convergent_in-infty LIMFUNC1:def 9 :
:: deftheorem Def10 defines divergent_in-infty_to+infty LIMFUNC1:def 10 :
:: deftheorem Def11 defines divergent_in-infty_to-infty LIMFUNC1:def 11 :
theorem Th71: :: LIMFUNC1:71
canceled;
theorem Th72: :: LIMFUNC1:72
canceled;
theorem Th73: :: LIMFUNC1:73
canceled;
theorem Th74: :: LIMFUNC1:74
canceled;
theorem Th75: :: LIMFUNC1:75
canceled;
theorem Th76: :: LIMFUNC1:76
canceled;
theorem Th77: :: LIMFUNC1:77
theorem Th78: :: LIMFUNC1:78
theorem Th79: :: LIMFUNC1:79
theorem Th80: :: LIMFUNC1:80
theorem Th81: :: LIMFUNC1:81
theorem Th82: :: LIMFUNC1:82
theorem Th83: :: LIMFUNC1:83
theorem Th84: :: LIMFUNC1:84
theorem Th85: :: LIMFUNC1:85
theorem Th86: :: LIMFUNC1:86
theorem Th87: :: LIMFUNC1:87
theorem Th88: :: LIMFUNC1:88
theorem Th89: :: LIMFUNC1:89
theorem Th90: :: LIMFUNC1:90
theorem Th91: :: LIMFUNC1:91
theorem Th92: :: LIMFUNC1:92
theorem Th93: :: LIMFUNC1:93
theorem Th94: :: LIMFUNC1:94
theorem Th95: :: LIMFUNC1:95
theorem Th96: :: LIMFUNC1:96
theorem Th97: :: LIMFUNC1:97
theorem Th98: :: LIMFUNC1:98
theorem Th99: :: LIMFUNC1:99
theorem Th100: :: LIMFUNC1:100
theorem Th101: :: LIMFUNC1:101
theorem Th102: :: LIMFUNC1:102
theorem Th103: :: LIMFUNC1:103
theorem Th104: :: LIMFUNC1:104
theorem Th105: :: LIMFUNC1:105
theorem Th106: :: LIMFUNC1:106
theorem Th107: :: LIMFUNC1:107
theorem Th108: :: LIMFUNC1:108
theorem Th109: :: LIMFUNC1:109
theorem Th110: :: LIMFUNC1:110
:: deftheorem Def12 defines lim_in+infty LIMFUNC1:def 12 :
:: deftheorem Def13 defines lim_in-infty LIMFUNC1:def 13 :
theorem Th111: :: LIMFUNC1:111
canceled;
theorem Th112: :: LIMFUNC1:112
canceled;
theorem Th113: :: LIMFUNC1:113
theorem Th114: :: LIMFUNC1:114
theorem Th115: :: LIMFUNC1:115
theorem Th116: :: LIMFUNC1:116
theorem Th117: :: LIMFUNC1:117
theorem Th118: :: LIMFUNC1:118
theorem Th119: :: LIMFUNC1:119
theorem Th120: :: LIMFUNC1:120
theorem Th121: :: LIMFUNC1:121
theorem Th122: :: LIMFUNC1:122
theorem Th123: :: LIMFUNC1:123
theorem Th124: :: LIMFUNC1:124
theorem Th125: :: LIMFUNC1:125
theorem Th126: :: LIMFUNC1:126
theorem Th127: :: LIMFUNC1:127
theorem Th128: :: LIMFUNC1:128
theorem Th129: :: LIMFUNC1:129
theorem Th130: :: LIMFUNC1:130
theorem Th131: :: LIMFUNC1:131
theorem Th132: :: LIMFUNC1:132
theorem Th133: :: LIMFUNC1:133
theorem Th134: :: LIMFUNC1:134
theorem Th135: :: LIMFUNC1:135
theorem Th136: :: LIMFUNC1:136
theorem Th137: :: LIMFUNC1:137
theorem Th138: :: LIMFUNC1:138
theorem Th139: :: LIMFUNC1:139
theorem Th140: :: LIMFUNC1:140
theorem Th141: :: LIMFUNC1:141
theorem Th142: :: LIMFUNC1:142
theorem Th143: :: LIMFUNC1:143
theorem Th144: :: LIMFUNC1:144
theorem Th145: :: LIMFUNC1:145
theorem Th146: :: LIMFUNC1:146
theorem Th147: :: LIMFUNC1:147
theorem Th148: :: LIMFUNC1:148
theorem Th149: :: LIMFUNC1:149
theorem Th150: :: LIMFUNC1:150