:: LIMFUNC2 semantic presentation
Lemma1:
for b1, b2, b3 being real number st 0 < b2 & b1 <= b3 holds
( b1 - b2 < b3 & b1 < b3 + b2 )
Lemma2:
for b1 being Real_Sequence
for b2, b3 being PartFunc of REAL , REAL
for b4 being Subset of REAL st rng b1 c= (dom (b2 (#) b3)) /\ b4 holds
( rng b1 c= dom (b2 (#) b3) & rng b1 c= b4 & dom (b2 (#) b3) = (dom b2) /\ (dom b3) & rng b1 c= dom b2 & rng b1 c= dom b3 & rng b1 c= (dom b2) /\ b4 & rng b1 c= (dom b3) /\ b4 )
Lemma3:
for b1 being Real
for b2 being Nat holds
( b1 - (1 / (b2 + 1)) < b1 & b1 < b1 + (1 / (b2 + 1)) )
Lemma4:
for b1 being Real_Sequence
for b2, b3 being PartFunc of REAL , REAL
for b4 being Subset of REAL st rng b1 c= (dom (b2 + b3)) /\ b4 holds
( rng b1 c= dom (b2 + b3) & rng b1 c= b4 & dom (b2 + b3) = (dom b2) /\ (dom b3) & rng b1 c= (dom b2) /\ b4 & rng b1 c= (dom b3) /\ b4 )
theorem Th1: :: LIMFUNC2:1
theorem Th2: :: LIMFUNC2:2
Lemma7:
for b1 being Real
for b2 being Real_Sequence
for b3 being PartFunc of REAL , REAL st ( for b4 being Real ex b5 being Real st
( b1 < b5 & ( for b6 being Real st b6 < b5 & b1 < b6 & b6 in dom b3 holds
b3 . b6 < b4 ) ) ) & b2 is convergent & lim b2 = b1 & rng b2 c= (dom b3) /\ (right_open_halfline b1) holds
b3 * b2 is divergent_to-infty
theorem Th3: :: LIMFUNC2:3
theorem Th4: :: LIMFUNC2:4
theorem Th5: :: LIMFUNC2:5
theorem Th6: :: LIMFUNC2:6
:: deftheorem Def1 defines is_left_convergent_in LIMFUNC2:def 1 :
:: deftheorem Def2 defines is_left_divergent_to+infty_in LIMFUNC2:def 2 :
:: deftheorem Def3 defines is_left_divergent_to-infty_in LIMFUNC2:def 3 :
:: deftheorem Def4 defines is_right_convergent_in LIMFUNC2:def 4 :
:: deftheorem Def5 defines is_right_divergent_to+infty_in LIMFUNC2:def 5 :
:: deftheorem Def6 defines is_right_divergent_to-infty_in LIMFUNC2:def 6 :
theorem Th7: :: LIMFUNC2:7
canceled;
theorem Th8: :: LIMFUNC2:8
canceled;
theorem Th9: :: LIMFUNC2:9
canceled;
theorem Th10: :: LIMFUNC2:10
canceled;
theorem Th11: :: LIMFUNC2:11
canceled;
theorem Th12: :: LIMFUNC2:12
canceled;
theorem Th13: :: LIMFUNC2:13
theorem Th14: :: LIMFUNC2:14
theorem Th15: :: LIMFUNC2:15
theorem Th16: :: LIMFUNC2:16
theorem Th17: :: LIMFUNC2:17
theorem Th18: :: LIMFUNC2:18
theorem Th19: :: LIMFUNC2:19
theorem Th20: :: LIMFUNC2:20
theorem Th21: :: LIMFUNC2:21
theorem Th22: :: LIMFUNC2:22
theorem Th23: :: LIMFUNC2:23
theorem Th24: :: LIMFUNC2:24
theorem Th25: :: LIMFUNC2:25
theorem Th26: :: LIMFUNC2:26
theorem Th27: :: LIMFUNC2:27
theorem Th28: :: LIMFUNC2:28
theorem Th29: :: LIMFUNC2:29
theorem Th30: :: LIMFUNC2:30
theorem Th31: :: LIMFUNC2:31
theorem Th32: :: LIMFUNC2:32
theorem Th33: :: LIMFUNC2:33
theorem Th34: :: LIMFUNC2:34
theorem Th35: :: LIMFUNC2:35
theorem Th36: :: LIMFUNC2:36
theorem Th37: :: LIMFUNC2:37
theorem Th38: :: LIMFUNC2:38
theorem Th39: :: LIMFUNC2:39
theorem Th40: :: LIMFUNC2:40
theorem Th41: :: LIMFUNC2:41
theorem Th42: :: LIMFUNC2:42
theorem Th43: :: LIMFUNC2:43
theorem Th44: :: LIMFUNC2:44
theorem Th45: :: LIMFUNC2:45
theorem Th46: :: LIMFUNC2:46
:: deftheorem Def7 defines lim_left LIMFUNC2:def 7 :
:: deftheorem Def8 defines lim_right LIMFUNC2:def 8 :
theorem Th47: :: LIMFUNC2:47
canceled;
theorem Th48: :: LIMFUNC2:48
canceled;
theorem Th49: :: LIMFUNC2:49
theorem Th50: :: LIMFUNC2:50
theorem Th51: :: LIMFUNC2:51
theorem Th52: :: LIMFUNC2:52
theorem Th53: :: LIMFUNC2:53
theorem Th54: :: LIMFUNC2:54
theorem Th55: :: LIMFUNC2:55
theorem Th56: :: LIMFUNC2:56
theorem Th57: :: LIMFUNC2:57
theorem Th58: :: LIMFUNC2:58
theorem Th59: :: LIMFUNC2:59
theorem Th60: :: LIMFUNC2:60
theorem Th61: :: LIMFUNC2:61
theorem Th62: :: LIMFUNC2:62
theorem Th63: :: LIMFUNC2:63
theorem Th64: :: LIMFUNC2:64
theorem Th65: :: LIMFUNC2:65
theorem Th66: :: LIMFUNC2:66
theorem Th67: :: LIMFUNC2:67
theorem Th68: :: LIMFUNC2:68
theorem Th69: :: LIMFUNC2:69
theorem Th70: :: LIMFUNC2:70
theorem Th71: :: LIMFUNC2:71
for
b1 being
Real for
b2,
b3,
b4 being
PartFunc of
REAL ,
REAL st
b2 is_left_convergent_in b1 &
b3 is_left_convergent_in b1 &
lim_left b2,
b1 = lim_left b3,
b1 & ( for
b5 being
Real st
b5 < b1 holds
ex
b6 being
Real st
(
b5 < b6 &
b6 < b1 &
b6 in dom b4 ) ) & ex
b5 being
Real st
( 0
< b5 & ( for
b6 being
Real st
b6 in (dom b4) /\ ].(b1 - b5),b1.[ holds
(
b2 . b6 <= b4 . b6 &
b4 . b6 <= b3 . b6 ) ) & ( (
(dom b2) /\ ].(b1 - b5),b1.[ c= (dom b3) /\ ].(b1 - b5),b1.[ &
(dom b4) /\ ].(b1 - b5),b1.[ c= (dom b2) /\ ].(b1 - b5),b1.[ ) or (
(dom b3) /\ ].(b1 - b5),b1.[ c= (dom b2) /\ ].(b1 - b5),b1.[ &
(dom b4) /\ ].(b1 - b5),b1.[ c= (dom b3) /\ ].(b1 - b5),b1.[ ) ) ) holds
(
b4 is_left_convergent_in b1 &
lim_left b4,
b1 = lim_left b2,
b1 )
theorem Th72: :: LIMFUNC2:72
theorem Th73: :: LIMFUNC2:73
for
b1 being
Real for
b2,
b3,
b4 being
PartFunc of
REAL ,
REAL st
b2 is_right_convergent_in b1 &
b3 is_right_convergent_in b1 &
lim_right b2,
b1 = lim_right b3,
b1 & ( for
b5 being
Real st
b1 < b5 holds
ex
b6 being
Real st
(
b6 < b5 &
b1 < b6 &
b6 in dom b4 ) ) & ex
b5 being
Real st
( 0
< b5 & ( for
b6 being
Real st
b6 in (dom b4) /\ ].b1,(b1 + b5).[ holds
(
b2 . b6 <= b4 . b6 &
b4 . b6 <= b3 . b6 ) ) & ( (
(dom b2) /\ ].b1,(b1 + b5).[ c= (dom b3) /\ ].b1,(b1 + b5).[ &
(dom b4) /\ ].b1,(b1 + b5).[ c= (dom b2) /\ ].b1,(b1 + b5).[ ) or (
(dom b3) /\ ].b1,(b1 + b5).[ c= (dom b2) /\ ].b1,(b1 + b5).[ &
(dom b4) /\ ].b1,(b1 + b5).[ c= (dom b3) /\ ].b1,(b1 + b5).[ ) ) ) holds
(
b4 is_right_convergent_in b1 &
lim_right b4,
b1 = lim_right b2,
b1 )
theorem Th74: :: LIMFUNC2:74
theorem Th75: :: LIMFUNC2:75
for
b1 being
Real for
b2,
b3 being
PartFunc of
REAL ,
REAL st
b2 is_left_convergent_in b1 &
b3 is_left_convergent_in b1 & ex
b4 being
Real st
( 0
< b4 & ( (
(dom b2) /\ ].(b1 - b4),b1.[ c= (dom b3) /\ ].(b1 - b4),b1.[ & ( for
b5 being
Real st
b5 in (dom b2) /\ ].(b1 - b4),b1.[ holds
b2 . b5 <= b3 . b5 ) ) or (
(dom b3) /\ ].(b1 - b4),b1.[ c= (dom b2) /\ ].(b1 - b4),b1.[ & ( for
b5 being
Real st
b5 in (dom b3) /\ ].(b1 - b4),b1.[ holds
b2 . b5 <= b3 . b5 ) ) ) ) holds
lim_left b2,
b1 <= lim_left b3,
b1
theorem Th76: :: LIMFUNC2:76
for
b1 being
Real for
b2,
b3 being
PartFunc of
REAL ,
REAL st
b2 is_right_convergent_in b1 &
b3 is_right_convergent_in b1 & ex
b4 being
Real st
( 0
< b4 & ( (
(dom b2) /\ ].b1,(b1 + b4).[ c= (dom b3) /\ ].b1,(b1 + b4).[ & ( for
b5 being
Real st
b5 in (dom b2) /\ ].b1,(b1 + b4).[ holds
b2 . b5 <= b3 . b5 ) ) or (
(dom b3) /\ ].b1,(b1 + b4).[ c= (dom b2) /\ ].b1,(b1 + b4).[ & ( for
b5 being
Real st
b5 in (dom b3) /\ ].b1,(b1 + b4).[ holds
b2 . b5 <= b3 . b5 ) ) ) ) holds
lim_right b2,
b1 <= lim_right b3,
b1
theorem Th77: :: LIMFUNC2:77
theorem Th78: :: LIMFUNC2:78
theorem Th79: :: LIMFUNC2:79
theorem Th80: :: LIMFUNC2:80
theorem Th81: :: LIMFUNC2:81
theorem Th82: :: LIMFUNC2:82
theorem Th83: :: LIMFUNC2:83
theorem Th84: :: LIMFUNC2:84
theorem Th85: :: LIMFUNC2:85
theorem Th86: :: LIMFUNC2:86