:: LOPBAN_4 semantic presentation
:: deftheorem Def1 defines are_commutative LOPBAN_4:def 1 :
Lemma2:
for b1 being Banach_Algebra
for b2 being Element of b1
for b3 being Nat holds
( b2 * (b2 #N b3) = b2 #N (b3 + 1) & (b2 #N b3) * b2 = b2 #N (b3 + 1) & b2 * (b2 #N b3) = (b2 #N b3) * b2 )
Lemma3:
for b1 being Banach_Algebra
for b2 being Nat
for b3, b4 being Element of b1 st b3,b4 are_commutative holds
( b4 * (b3 #N b2) = (b3 #N b2) * b4 & b3 * (b4 #N b2) = (b4 #N b2) * b3 )
theorem Th1: :: LOPBAN_4:1
theorem Th2: :: LOPBAN_4:2
theorem Th3: :: LOPBAN_4:3
theorem Th4: :: LOPBAN_4:4
theorem Th5: :: LOPBAN_4:5
theorem Th6: :: LOPBAN_4:6
theorem Th7: :: LOPBAN_4:7
theorem Th8: :: LOPBAN_4:8
theorem Th9: :: LOPBAN_4:9
theorem Th10: :: LOPBAN_4:10
theorem Th11: :: LOPBAN_4:11
theorem Th12: :: LOPBAN_4:12
:: deftheorem Def2 defines ExpSeq LOPBAN_4:def 2 :
theorem Th13: :: LOPBAN_4:13
( ( for
b1 being
Nat st 0
< b1 holds
((b1 -' 1) ! ) * b1 = b1 ! ) & ( for
b1,
b2 being
Nat st
b2 <= b1 holds
((b1 -' b2) ! ) * ((b1 + 1) - b2) = ((b1 + 1) -' b2) ! ) )
:: deftheorem Def3 defines Coef LOPBAN_4:def 3 :
for
b1 being
Nat for
b2 being
Real_Sequence holds
(
b2 = Coef b1 iff for
b3 being
Nat holds
( (
b3 <= b1 implies
b2 . b3 = (b1 ! ) / ((b3 ! ) * ((b1 -' b3) ! )) ) & (
b3 > b1 implies
b2 . b3 = 0 ) ) );
:: deftheorem Def4 defines Coef_e LOPBAN_4:def 4 :
for
b1 being
Nat for
b2 being
Real_Sequence holds
(
b2 = Coef_e b1 iff for
b3 being
Nat holds
( (
b3 <= b1 implies
b2 . b3 = 1
/ ((b3 ! ) * ((b1 -' b3) ! )) ) & (
b3 > b1 implies
b2 . b3 = 0 ) ) );
:: deftheorem Def5 defines Sift LOPBAN_4:def 5 :
:: deftheorem Def6 defines Expan LOPBAN_4:def 6 :
:: deftheorem Def7 defines Expan_e LOPBAN_4:def 7 :
:: deftheorem Def8 defines Alfa LOPBAN_4:def 8 :
:: deftheorem Def9 defines Conj LOPBAN_4:def 9 :
theorem Th14: :: LOPBAN_4:14
theorem Th15: :: LOPBAN_4:15
theorem Th16: :: LOPBAN_4:16
theorem Th17: :: LOPBAN_4:17
theorem Th18: :: LOPBAN_4:18
theorem Th19: :: LOPBAN_4:19
theorem Th20: :: LOPBAN_4:20
theorem Th21: :: LOPBAN_4:21
theorem Th22: :: LOPBAN_4:22
theorem Th23: :: LOPBAN_4:23
theorem Th24: :: LOPBAN_4:24
theorem Th25: :: LOPBAN_4:25
theorem Th26: :: LOPBAN_4:26
theorem Th27: :: LOPBAN_4:27
theorem Th28: :: LOPBAN_4:28
theorem Th29: :: LOPBAN_4:29
theorem Th30: :: LOPBAN_4:30
theorem Th31: :: LOPBAN_4:31
theorem Th32: :: LOPBAN_4:32
theorem Th33: :: LOPBAN_4:33
Lemma45:
for b1 being Banach_Algebra
for b2, b3 being Element of b1 st b2,b3 are_commutative holds
(Sum (b2 ExpSeq )) * (Sum (b3 ExpSeq )) = Sum ((b2 + b3) ExpSeq )
:: deftheorem Def10 defines exp_ LOPBAN_4:def 10 :
:: deftheorem Def11 defines exp LOPBAN_4:def 11 :
theorem Th34: :: LOPBAN_4:34
theorem Th35: :: LOPBAN_4:35
theorem Th36: :: LOPBAN_4:36
theorem Th37: :: LOPBAN_4:37
theorem Th38: :: LOPBAN_4:38
theorem Th39: :: LOPBAN_4:39
theorem Th40: :: LOPBAN_4:40
theorem Th41: :: LOPBAN_4:41