:: LOPBAN_2 semantic presentation
theorem Th1: :: LOPBAN_2:1
theorem Th2: :: LOPBAN_2:2
for
b1,
b2,
b3 being
RealNormSpace for
b4 being
bounded LinearOperator of
b1,
b2 for
b5 being
bounded LinearOperator of
b2,
b3 holds
(
b5 * b4 is
bounded LinearOperator of
b1,
b3 & ( for
b6 being
VECTOR of
b1 holds
(
||.((b5 * b4) . b6).|| <= (((BoundedLinearOperatorsNorm b2,b3) . b5) * ((BoundedLinearOperatorsNorm b1,b2) . b4)) * ||.b6.|| &
(BoundedLinearOperatorsNorm b1,b3) . (b5 * b4) <= ((BoundedLinearOperatorsNorm b2,b3) . b5) * ((BoundedLinearOperatorsNorm b1,b2) . b4) ) ) )
definition
let c1 be
RealNormSpace;
let c2,
c3 be
Element of
BoundedLinearOperators c1,
c1;
func c2 + c3 -> Element of
BoundedLinearOperators a1,
a1 equals :: LOPBAN_2:def 1
(Add_ (BoundedLinearOperators a1,a1),(R_VectorSpace_of_LinearOperators a1,a1)) . a2,
a3;
correctness
coherence
(Add_ (BoundedLinearOperators c1,c1),(R_VectorSpace_of_LinearOperators c1,c1)) . c2,c3 is Element of BoundedLinearOperators c1,c1;
;
end;
:: deftheorem Def1 defines + LOPBAN_2:def 1 :
definition
let c1 be
RealNormSpace;
let c2,
c3 be
Element of
BoundedLinearOperators c1,
c1;
func c3 * c2 -> Element of
BoundedLinearOperators a1,
a1 equals :: LOPBAN_2:def 2
(modetrans a3,a1,a1) * (modetrans a2,a1,a1);
correctness
coherence
(modetrans c3,c1,c1) * (modetrans c2,c1,c1) is Element of BoundedLinearOperators c1,c1;
by LOPBAN_1:def 10;
end;
:: deftheorem Def2 defines * LOPBAN_2:def 2 :
definition
let c1 be
RealNormSpace;
let c2 be
Element of
BoundedLinearOperators c1,
c1;
let c3 be
Real;
func c3 * c2 -> Element of
BoundedLinearOperators a1,
a1 equals :: LOPBAN_2:def 3
(Mult_ (BoundedLinearOperators a1,a1),(R_VectorSpace_of_LinearOperators a1,a1)) . a3,
a2;
correctness
coherence
(Mult_ (BoundedLinearOperators c1,c1),(R_VectorSpace_of_LinearOperators c1,c1)) . c3,c2 is Element of BoundedLinearOperators c1,c1;
;
end;
:: deftheorem Def3 defines * LOPBAN_2:def 3 :
definition
let c1 be
RealNormSpace;
func FuncMult c1 -> BinOp of
BoundedLinearOperators a1,
a1 means :
Def4:
:: LOPBAN_2:def 4
for
b1,
b2 being
Element of
BoundedLinearOperators a1,
a1 holds
a2 . b1,
b2 = b1 * b2;
existence
ex b1 being BinOp of BoundedLinearOperators c1,c1 st
for b2, b3 being Element of BoundedLinearOperators c1,c1 holds b1 . b2,b3 = b2 * b3
uniqueness
for b1, b2 being BinOp of BoundedLinearOperators c1,c1 st ( for b3, b4 being Element of BoundedLinearOperators c1,c1 holds b1 . b3,b4 = b3 * b4 ) & ( for b3, b4 being Element of BoundedLinearOperators c1,c1 holds b2 . b3,b4 = b3 * b4 ) holds
b1 = b2
end;
:: deftheorem Def4 defines FuncMult LOPBAN_2:def 4 :
theorem Th3: :: LOPBAN_2:3
:: deftheorem Def5 defines FuncUnit LOPBAN_2:def 5 :
theorem Th4: :: LOPBAN_2:4
theorem Th5: :: LOPBAN_2:5
theorem Th6: :: LOPBAN_2:6
theorem Th7: :: LOPBAN_2:7
theorem Th8: :: LOPBAN_2:8
theorem Th9: :: LOPBAN_2:9
theorem Th10: :: LOPBAN_2:10
theorem Th11: :: LOPBAN_2:11
theorem Th12: :: LOPBAN_2:12
definition
let c1 be
RealNormSpace;
func Ring_of_BoundedLinearOperators c1 -> doubleLoopStr equals :: LOPBAN_2:def 6
doubleLoopStr(#
(BoundedLinearOperators a1,a1),
(Add_ (BoundedLinearOperators a1,a1),(R_VectorSpace_of_LinearOperators a1,a1)),
(FuncMult a1),
(FuncUnit a1),
(Zero_ (BoundedLinearOperators a1,a1),(R_VectorSpace_of_LinearOperators a1,a1)) #);
correctness
coherence
doubleLoopStr(# (BoundedLinearOperators c1,c1),(Add_ (BoundedLinearOperators c1,c1),(R_VectorSpace_of_LinearOperators c1,c1)),(FuncMult c1),(FuncUnit c1),(Zero_ (BoundedLinearOperators c1,c1),(R_VectorSpace_of_LinearOperators c1,c1)) #) is doubleLoopStr ;
;
end;
:: deftheorem Def6 defines Ring_of_BoundedLinearOperators LOPBAN_2:def 6 :
for
b1 being
RealNormSpace holds
Ring_of_BoundedLinearOperators b1 = doubleLoopStr(#
(BoundedLinearOperators b1,b1),
(Add_ (BoundedLinearOperators b1,b1),(R_VectorSpace_of_LinearOperators b1,b1)),
(FuncMult b1),
(FuncUnit b1),
(Zero_ (BoundedLinearOperators b1,b1),(R_VectorSpace_of_LinearOperators b1,b1)) #);
theorem Th13: :: LOPBAN_2:13
theorem Th14: :: LOPBAN_2:14
definition
let c1 be
RealNormSpace;
func R_Algebra_of_BoundedLinearOperators c1 -> AlgebraStr equals :: LOPBAN_2:def 7
AlgebraStr(#
(BoundedLinearOperators a1,a1),
(FuncMult a1),
(Add_ (BoundedLinearOperators a1,a1),(R_VectorSpace_of_LinearOperators a1,a1)),
(Mult_ (BoundedLinearOperators a1,a1),(R_VectorSpace_of_LinearOperators a1,a1)),
(FuncUnit a1),
(Zero_ (BoundedLinearOperators a1,a1),(R_VectorSpace_of_LinearOperators a1,a1)) #);
correctness
coherence
AlgebraStr(# (BoundedLinearOperators c1,c1),(FuncMult c1),(Add_ (BoundedLinearOperators c1,c1),(R_VectorSpace_of_LinearOperators c1,c1)),(Mult_ (BoundedLinearOperators c1,c1),(R_VectorSpace_of_LinearOperators c1,c1)),(FuncUnit c1),(Zero_ (BoundedLinearOperators c1,c1),(R_VectorSpace_of_LinearOperators c1,c1)) #) is AlgebraStr ;
;
end;
:: deftheorem Def7 defines R_Algebra_of_BoundedLinearOperators LOPBAN_2:def 7 :
for
b1 being
RealNormSpace holds
R_Algebra_of_BoundedLinearOperators b1 = AlgebraStr(#
(BoundedLinearOperators b1,b1),
(FuncMult b1),
(Add_ (BoundedLinearOperators b1,b1),(R_VectorSpace_of_LinearOperators b1,b1)),
(Mult_ (BoundedLinearOperators b1,b1),(R_VectorSpace_of_LinearOperators b1,b1)),
(FuncUnit b1),
(Zero_ (BoundedLinearOperators b1,b1),(R_VectorSpace_of_LinearOperators b1,b1)) #);
theorem Th15: :: LOPBAN_2:15
theorem Th16: :: LOPBAN_2:16
theorem Th17: :: LOPBAN_2:17
theorem Th18: :: LOPBAN_2:18
definition
let c1 be
RealNormSpace;
func R_Normed_Algebra_of_BoundedLinearOperators c1 -> Normed_AlgebraStr equals :: LOPBAN_2:def 8
Normed_AlgebraStr(#
(BoundedLinearOperators a1,a1),
(FuncMult a1),
(Add_ (BoundedLinearOperators a1,a1),(R_VectorSpace_of_LinearOperators a1,a1)),
(Mult_ (BoundedLinearOperators a1,a1),(R_VectorSpace_of_LinearOperators a1,a1)),
(FuncUnit a1),
(Zero_ (BoundedLinearOperators a1,a1),(R_VectorSpace_of_LinearOperators a1,a1)),
(BoundedLinearOperatorsNorm a1,a1) #);
correctness
coherence
Normed_AlgebraStr(# (BoundedLinearOperators c1,c1),(FuncMult c1),(Add_ (BoundedLinearOperators c1,c1),(R_VectorSpace_of_LinearOperators c1,c1)),(Mult_ (BoundedLinearOperators c1,c1),(R_VectorSpace_of_LinearOperators c1,c1)),(FuncUnit c1),(Zero_ (BoundedLinearOperators c1,c1),(R_VectorSpace_of_LinearOperators c1,c1)),(BoundedLinearOperatorsNorm c1,c1) #) is Normed_AlgebraStr ;
;
end;
:: deftheorem Def8 defines R_Normed_Algebra_of_BoundedLinearOperators LOPBAN_2:def 8 :
for
b1 being
RealNormSpace holds
R_Normed_Algebra_of_BoundedLinearOperators b1 = Normed_AlgebraStr(#
(BoundedLinearOperators b1,b1),
(FuncMult b1),
(Add_ (BoundedLinearOperators b1,b1),(R_VectorSpace_of_LinearOperators b1,b1)),
(Mult_ (BoundedLinearOperators b1,b1),(R_VectorSpace_of_LinearOperators b1,b1)),
(FuncUnit b1),
(Zero_ (BoundedLinearOperators b1,b1),(R_VectorSpace_of_LinearOperators b1,b1)),
(BoundedLinearOperatorsNorm b1,b1) #);
theorem Th19: :: LOPBAN_2:19
theorem Th20: :: LOPBAN_2:20
:: deftheorem Def9 defines Banach_Algebra-like_1 LOPBAN_2:def 9 :
:: deftheorem Def10 defines Banach_Algebra-like_2 LOPBAN_2:def 10 :
:: deftheorem Def11 defines Banach_Algebra-like_3 LOPBAN_2:def 11 :
:: deftheorem Def12 defines Banach_Algebra-like LOPBAN_2:def 12 :
theorem Th21: :: LOPBAN_2:21
theorem Th22: :: LOPBAN_2:22
theorem Th23: :: LOPBAN_2:23