:: LOPBAN_1 semantic presentation
theorem Th1: :: LOPBAN_1:1
theorem Th2: :: LOPBAN_1:2
definition
let c1 be non
empty set ;
let c2 be non
empty LoopStr ;
func FuncAdd c1,
c2 -> BinOp of
Funcs a1,the
carrier of
a2 means :
Def1:
:: LOPBAN_1:def 1
for
b1,
b2 being
Element of
Funcs a1,the
carrier of
a2 holds
a3 . b1,
b2 = the
add of
a2 .: b1,
b2;
existence
ex b1 being BinOp of Funcs c1,the carrier of c2 st
for b2, b3 being Element of Funcs c1,the carrier of c2 holds b1 . b2,b3 = the add of c2 .: b2,b3
by Th1;
uniqueness
for b1, b2 being BinOp of Funcs c1,the carrier of c2 st ( for b3, b4 being Element of Funcs c1,the carrier of c2 holds b1 . b3,b4 = the add of c2 .: b3,b4 ) & ( for b3, b4 being Element of Funcs c1,the carrier of c2 holds b2 . b3,b4 = the add of c2 .: b3,b4 ) holds
b1 = b2
end;
:: deftheorem Def1 defines FuncAdd LOPBAN_1:def 1 :
definition
let c1 be non
empty set ;
let c2 be
RealLinearSpace;
func FuncExtMult c1,
c2 -> Function of
[:REAL ,(Funcs a1,the carrier of a2):],
Funcs a1,the
carrier of
a2 means :
Def2:
:: LOPBAN_1:def 2
for
b1 being
Real for
b2 being
Element of
Funcs a1,the
carrier of
a2 for
b3 being
Element of
a1 holds
(a3 . [b1,b2]) . b3 = b1 * (b2 . b3);
existence
ex b1 being Function of [:REAL ,(Funcs c1,the carrier of c2):], Funcs c1,the carrier of c2 st
for b2 being Real
for b3 being Element of Funcs c1,the carrier of c2
for b4 being Element of c1 holds (b1 . [b2,b3]) . b4 = b2 * (b3 . b4)
by Th2;
uniqueness
for b1, b2 being Function of [:REAL ,(Funcs c1,the carrier of c2):], Funcs c1,the carrier of c2 st ( for b3 being Real
for b4 being Element of Funcs c1,the carrier of c2
for b5 being Element of c1 holds (b1 . [b3,b4]) . b5 = b3 * (b4 . b5) ) & ( for b3 being Real
for b4 being Element of Funcs c1,the carrier of c2
for b5 being Element of c1 holds (b2 . [b3,b4]) . b5 = b3 * (b4 . b5) ) holds
b1 = b2
end;
:: deftheorem Def2 defines FuncExtMult LOPBAN_1:def 2 :
:: deftheorem Def3 defines FuncZero LOPBAN_1:def 3 :
Lemma5:
for b1, b2 being non empty set
for b3 being Element of b1
for b4 being Function of b1,b2 holds b3 in dom b4
theorem Th3: :: LOPBAN_1:3
theorem Th4: :: LOPBAN_1:4
theorem Th5: :: LOPBAN_1:5
theorem Th6: :: LOPBAN_1:6
theorem Th7: :: LOPBAN_1:7
for
b1 being non
empty set for
b2 being
RealLinearSpace for
b3,
b4,
b5 being
Element of
Funcs b1,the
carrier of
b2 holds
(FuncAdd b1,b2) . b3,
((FuncAdd b1,b2) . b4,b5) = (FuncAdd b1,b2) . ((FuncAdd b1,b2) . b3,b4),
b5
theorem Th8: :: LOPBAN_1:8
theorem Th9: :: LOPBAN_1:9
theorem Th10: :: LOPBAN_1:10
theorem Th11: :: LOPBAN_1:11
theorem Th12: :: LOPBAN_1:12
for
b1 being non
empty set for
b2 being
RealLinearSpace for
b3 being
Element of
Funcs b1,the
carrier of
b2 for
b4,
b5 being
Real holds
(FuncAdd b1,b2) . ((FuncExtMult b1,b2) . [b4,b3]),
((FuncExtMult b1,b2) . [b5,b3]) = (FuncExtMult b1,b2) . [(b4 + b5),b3]
Lemma16:
for b1 being non empty set
for b2 being RealLinearSpace
for b3, b4 being Element of Funcs b1,the carrier of b2
for b5 being Real holds (FuncAdd b1,b2) . ((FuncExtMult b1,b2) . [b5,b3]),((FuncExtMult b1,b2) . [b5,b4]) = (FuncExtMult b1,b2) . [b5,((FuncAdd b1,b2) . b3,b4)]
theorem Th13: :: LOPBAN_1:13
definition
let c1 be non
empty set ;
let c2 be
RealLinearSpace;
func RealVectSpace c1,
c2 -> RealLinearSpace equals :: LOPBAN_1:def 4
RLSStruct(#
(Funcs a1,the carrier of a2),
(FuncZero a1,a2),
(FuncAdd a1,a2),
(FuncExtMult a1,a2) #);
coherence
RLSStruct(# (Funcs c1,the carrier of c2),(FuncZero c1,c2),(FuncAdd c1,c2),(FuncExtMult c1,c2) #) is RealLinearSpace
by Th13;
end;
:: deftheorem Def4 defines RealVectSpace LOPBAN_1:def 4 :
theorem Th14: :: LOPBAN_1:14
theorem Th15: :: LOPBAN_1:15
theorem Th16: :: LOPBAN_1:16
:: deftheorem Def5 defines additive LOPBAN_1:def 5 :
:: deftheorem Def6 defines homogeneous LOPBAN_1:def 6 :
definition
let c1,
c2 be
RealLinearSpace;
func LinearOperators c1,
c2 -> Subset of
(RealVectSpace the carrier of a1,a2) means :
Def7:
:: LOPBAN_1:def 7
for
b1 being
set holds
(
b1 in a3 iff
b1 is
LinearOperator of
a1,
a2 );
existence
ex b1 being Subset of (RealVectSpace the carrier of c1,c2) st
for b2 being set holds
( b2 in b1 iff b2 is LinearOperator of c1,c2 )
uniqueness
for b1, b2 being Subset of (RealVectSpace the carrier of c1,c2) st ( for b3 being set holds
( b3 in b1 iff b3 is LinearOperator of c1,c2 ) ) & ( for b3 being set holds
( b3 in b2 iff b3 is LinearOperator of c1,c2 ) ) holds
b1 = b2
end;
:: deftheorem Def7 defines LinearOperators LOPBAN_1:def 7 :
theorem Th17: :: LOPBAN_1:17
theorem Th18: :: LOPBAN_1:18
for
b1,
b2 being
RealLinearSpace holds
RLSStruct(#
(LinearOperators b1,b2),
(Zero_ (LinearOperators b1,b2),(RealVectSpace the carrier of b1,b2)),
(Add_ (LinearOperators b1,b2),(RealVectSpace the carrier of b1,b2)),
(Mult_ (LinearOperators b1,b2),(RealVectSpace the carrier of b1,b2)) #) is
Subspace of
RealVectSpace the
carrier of
b1,
b2
registration
let c1,
c2 be
RealLinearSpace;
cluster RLSStruct(#
(LinearOperators a1,a2),
(Zero_ (LinearOperators a1,a2),(RealVectSpace the carrier of a1,a2)),
(Add_ (LinearOperators a1,a2),(RealVectSpace the carrier of a1,a2)),
(Mult_ (LinearOperators a1,a2),(RealVectSpace the carrier of a1,a2)) #)
-> Abelian add-associative right_zeroed right_complementable RealLinearSpace-like ;
coherence
( RLSStruct(# (LinearOperators c1,c2),(Zero_ (LinearOperators c1,c2),(RealVectSpace the carrier of c1,c2)),(Add_ (LinearOperators c1,c2),(RealVectSpace the carrier of c1,c2)),(Mult_ (LinearOperators c1,c2),(RealVectSpace the carrier of c1,c2)) #) is Abelian & RLSStruct(# (LinearOperators c1,c2),(Zero_ (LinearOperators c1,c2),(RealVectSpace the carrier of c1,c2)),(Add_ (LinearOperators c1,c2),(RealVectSpace the carrier of c1,c2)),(Mult_ (LinearOperators c1,c2),(RealVectSpace the carrier of c1,c2)) #) is add-associative & RLSStruct(# (LinearOperators c1,c2),(Zero_ (LinearOperators c1,c2),(RealVectSpace the carrier of c1,c2)),(Add_ (LinearOperators c1,c2),(RealVectSpace the carrier of c1,c2)),(Mult_ (LinearOperators c1,c2),(RealVectSpace the carrier of c1,c2)) #) is right_zeroed & RLSStruct(# (LinearOperators c1,c2),(Zero_ (LinearOperators c1,c2),(RealVectSpace the carrier of c1,c2)),(Add_ (LinearOperators c1,c2),(RealVectSpace the carrier of c1,c2)),(Mult_ (LinearOperators c1,c2),(RealVectSpace the carrier of c1,c2)) #) is right_complementable & RLSStruct(# (LinearOperators c1,c2),(Zero_ (LinearOperators c1,c2),(RealVectSpace the carrier of c1,c2)),(Add_ (LinearOperators c1,c2),(RealVectSpace the carrier of c1,c2)),(Mult_ (LinearOperators c1,c2),(RealVectSpace the carrier of c1,c2)) #) is RealLinearSpace-like )
by Th18;
end;
definition
let c1,
c2 be
RealLinearSpace;
func R_VectorSpace_of_LinearOperators c1,
c2 -> RealLinearSpace equals :: LOPBAN_1:def 8
RLSStruct(#
(LinearOperators a1,a2),
(Zero_ (LinearOperators a1,a2),(RealVectSpace the carrier of a1,a2)),
(Add_ (LinearOperators a1,a2),(RealVectSpace the carrier of a1,a2)),
(Mult_ (LinearOperators a1,a2),(RealVectSpace the carrier of a1,a2)) #);
coherence
RLSStruct(# (LinearOperators c1,c2),(Zero_ (LinearOperators c1,c2),(RealVectSpace the carrier of c1,c2)),(Add_ (LinearOperators c1,c2),(RealVectSpace the carrier of c1,c2)),(Mult_ (LinearOperators c1,c2),(RealVectSpace the carrier of c1,c2)) #) is RealLinearSpace
;
end;
:: deftheorem Def8 defines R_VectorSpace_of_LinearOperators LOPBAN_1:def 8 :
for
b1,
b2 being
RealLinearSpace holds
R_VectorSpace_of_LinearOperators b1,
b2 = RLSStruct(#
(LinearOperators b1,b2),
(Zero_ (LinearOperators b1,b2),(RealVectSpace the carrier of b1,b2)),
(Add_ (LinearOperators b1,b2),(RealVectSpace the carrier of b1,b2)),
(Mult_ (LinearOperators b1,b2),(RealVectSpace the carrier of b1,b2)) #);
theorem Th19: :: LOPBAN_1:19
canceled;
theorem Th20: :: LOPBAN_1:20
theorem Th21: :: LOPBAN_1:21
theorem Th22: :: LOPBAN_1:22
theorem Th23: :: LOPBAN_1:23
theorem Th24: :: LOPBAN_1:24
:: deftheorem Def9 defines bounded LOPBAN_1:def 9 :
theorem Th25: :: LOPBAN_1:25
definition
let c1,
c2 be
RealNormSpace;
func BoundedLinearOperators c1,
c2 -> Subset of
(R_VectorSpace_of_LinearOperators a1,a2) means :
Def10:
:: LOPBAN_1:def 10
for
b1 being
set holds
(
b1 in a3 iff
b1 is
bounded LinearOperator of
a1,
a2 );
existence
ex b1 being Subset of (R_VectorSpace_of_LinearOperators c1,c2) st
for b2 being set holds
( b2 in b1 iff b2 is bounded LinearOperator of c1,c2 )
uniqueness
for b1, b2 being Subset of (R_VectorSpace_of_LinearOperators c1,c2) st ( for b3 being set holds
( b3 in b1 iff b3 is bounded LinearOperator of c1,c2 ) ) & ( for b3 being set holds
( b3 in b2 iff b3 is bounded LinearOperator of c1,c2 ) ) holds
b1 = b2
end;
:: deftheorem Def10 defines BoundedLinearOperators LOPBAN_1:def 10 :
theorem Th26: :: LOPBAN_1:26
theorem Th27: :: LOPBAN_1:27
for
b1,
b2 being
RealNormSpace holds
RLSStruct(#
(BoundedLinearOperators b1,b2),
(Zero_ (BoundedLinearOperators b1,b2),(R_VectorSpace_of_LinearOperators b1,b2)),
(Add_ (BoundedLinearOperators b1,b2),(R_VectorSpace_of_LinearOperators b1,b2)),
(Mult_ (BoundedLinearOperators b1,b2),(R_VectorSpace_of_LinearOperators b1,b2)) #) is
Subspace of
R_VectorSpace_of_LinearOperators b1,
b2
registration
let c1,
c2 be
RealNormSpace;
cluster RLSStruct(#
(BoundedLinearOperators a1,a2),
(Zero_ (BoundedLinearOperators a1,a2),(R_VectorSpace_of_LinearOperators a1,a2)),
(Add_ (BoundedLinearOperators a1,a2),(R_VectorSpace_of_LinearOperators a1,a2)),
(Mult_ (BoundedLinearOperators a1,a2),(R_VectorSpace_of_LinearOperators a1,a2)) #)
-> Abelian add-associative right_zeroed right_complementable RealLinearSpace-like ;
coherence
( RLSStruct(# (BoundedLinearOperators c1,c2),(Zero_ (BoundedLinearOperators c1,c2),(R_VectorSpace_of_LinearOperators c1,c2)),(Add_ (BoundedLinearOperators c1,c2),(R_VectorSpace_of_LinearOperators c1,c2)),(Mult_ (BoundedLinearOperators c1,c2),(R_VectorSpace_of_LinearOperators c1,c2)) #) is Abelian & RLSStruct(# (BoundedLinearOperators c1,c2),(Zero_ (BoundedLinearOperators c1,c2),(R_VectorSpace_of_LinearOperators c1,c2)),(Add_ (BoundedLinearOperators c1,c2),(R_VectorSpace_of_LinearOperators c1,c2)),(Mult_ (BoundedLinearOperators c1,c2),(R_VectorSpace_of_LinearOperators c1,c2)) #) is add-associative & RLSStruct(# (BoundedLinearOperators c1,c2),(Zero_ (BoundedLinearOperators c1,c2),(R_VectorSpace_of_LinearOperators c1,c2)),(Add_ (BoundedLinearOperators c1,c2),(R_VectorSpace_of_LinearOperators c1,c2)),(Mult_ (BoundedLinearOperators c1,c2),(R_VectorSpace_of_LinearOperators c1,c2)) #) is right_zeroed & RLSStruct(# (BoundedLinearOperators c1,c2),(Zero_ (BoundedLinearOperators c1,c2),(R_VectorSpace_of_LinearOperators c1,c2)),(Add_ (BoundedLinearOperators c1,c2),(R_VectorSpace_of_LinearOperators c1,c2)),(Mult_ (BoundedLinearOperators c1,c2),(R_VectorSpace_of_LinearOperators c1,c2)) #) is right_complementable & RLSStruct(# (BoundedLinearOperators c1,c2),(Zero_ (BoundedLinearOperators c1,c2),(R_VectorSpace_of_LinearOperators c1,c2)),(Add_ (BoundedLinearOperators c1,c2),(R_VectorSpace_of_LinearOperators c1,c2)),(Mult_ (BoundedLinearOperators c1,c2),(R_VectorSpace_of_LinearOperators c1,c2)) #) is RealLinearSpace-like )
by Th27;
end;
definition
let c1,
c2 be
RealNormSpace;
func R_VectorSpace_of_BoundedLinearOperators c1,
c2 -> RealLinearSpace equals :: LOPBAN_1:def 11
RLSStruct(#
(BoundedLinearOperators a1,a2),
(Zero_ (BoundedLinearOperators a1,a2),(R_VectorSpace_of_LinearOperators a1,a2)),
(Add_ (BoundedLinearOperators a1,a2),(R_VectorSpace_of_LinearOperators a1,a2)),
(Mult_ (BoundedLinearOperators a1,a2),(R_VectorSpace_of_LinearOperators a1,a2)) #);
coherence
RLSStruct(# (BoundedLinearOperators c1,c2),(Zero_ (BoundedLinearOperators c1,c2),(R_VectorSpace_of_LinearOperators c1,c2)),(Add_ (BoundedLinearOperators c1,c2),(R_VectorSpace_of_LinearOperators c1,c2)),(Mult_ (BoundedLinearOperators c1,c2),(R_VectorSpace_of_LinearOperators c1,c2)) #) is RealLinearSpace
;
end;
:: deftheorem Def11 defines R_VectorSpace_of_BoundedLinearOperators LOPBAN_1:def 11 :
for
b1,
b2 being
RealNormSpace holds
R_VectorSpace_of_BoundedLinearOperators b1,
b2 = RLSStruct(#
(BoundedLinearOperators b1,b2),
(Zero_ (BoundedLinearOperators b1,b2),(R_VectorSpace_of_LinearOperators b1,b2)),
(Add_ (BoundedLinearOperators b1,b2),(R_VectorSpace_of_LinearOperators b1,b2)),
(Mult_ (BoundedLinearOperators b1,b2),(R_VectorSpace_of_LinearOperators b1,b2)) #);
theorem Th28: :: LOPBAN_1:28
canceled;
theorem Th29: :: LOPBAN_1:29
theorem Th30: :: LOPBAN_1:30
theorem Th31: :: LOPBAN_1:31
:: deftheorem Def12 defines modetrans LOPBAN_1:def 12 :
:: deftheorem Def13 defines PreNorms LOPBAN_1:def 13 :
theorem Th32: :: LOPBAN_1:32
theorem Th33: :: LOPBAN_1:33
theorem Th34: :: LOPBAN_1:34
definition
let c1,
c2 be
RealNormSpace;
func BoundedLinearOperatorsNorm c1,
c2 -> Function of
BoundedLinearOperators a1,
a2,
REAL means :
Def14:
:: LOPBAN_1:def 14
for
b1 being
set st
b1 in BoundedLinearOperators a1,
a2 holds
a3 . b1 = sup (PreNorms (modetrans b1,a1,a2));
existence
ex b1 being Function of BoundedLinearOperators c1,c2, REAL st
for b2 being set st b2 in BoundedLinearOperators c1,c2 holds
b1 . b2 = sup (PreNorms (modetrans b2,c1,c2))
by Th34;
uniqueness
for b1, b2 being Function of BoundedLinearOperators c1,c2, REAL st ( for b3 being set st b3 in BoundedLinearOperators c1,c2 holds
b1 . b3 = sup (PreNorms (modetrans b3,c1,c2)) ) & ( for b3 being set st b3 in BoundedLinearOperators c1,c2 holds
b2 . b3 = sup (PreNorms (modetrans b3,c1,c2)) ) holds
b1 = b2
end;
:: deftheorem Def14 defines BoundedLinearOperatorsNorm LOPBAN_1:def 14 :
theorem Th35: :: LOPBAN_1:35
theorem Th36: :: LOPBAN_1:36
definition
let c1,
c2 be
RealNormSpace;
func R_NormSpace_of_BoundedLinearOperators c1,
c2 -> non
empty NORMSTR equals :: LOPBAN_1:def 15
NORMSTR(#
(BoundedLinearOperators a1,a2),
(Zero_ (BoundedLinearOperators a1,a2),(R_VectorSpace_of_LinearOperators a1,a2)),
(Add_ (BoundedLinearOperators a1,a2),(R_VectorSpace_of_LinearOperators a1,a2)),
(Mult_ (BoundedLinearOperators a1,a2),(R_VectorSpace_of_LinearOperators a1,a2)),
(BoundedLinearOperatorsNorm a1,a2) #);
coherence
NORMSTR(# (BoundedLinearOperators c1,c2),(Zero_ (BoundedLinearOperators c1,c2),(R_VectorSpace_of_LinearOperators c1,c2)),(Add_ (BoundedLinearOperators c1,c2),(R_VectorSpace_of_LinearOperators c1,c2)),(Mult_ (BoundedLinearOperators c1,c2),(R_VectorSpace_of_LinearOperators c1,c2)),(BoundedLinearOperatorsNorm c1,c2) #) is non empty NORMSTR
;
end;
:: deftheorem Def15 defines R_NormSpace_of_BoundedLinearOperators LOPBAN_1:def 15 :
for
b1,
b2 being
RealNormSpace holds
R_NormSpace_of_BoundedLinearOperators b1,
b2 = NORMSTR(#
(BoundedLinearOperators b1,b2),
(Zero_ (BoundedLinearOperators b1,b2),(R_VectorSpace_of_LinearOperators b1,b2)),
(Add_ (BoundedLinearOperators b1,b2),(R_VectorSpace_of_LinearOperators b1,b2)),
(Mult_ (BoundedLinearOperators b1,b2),(R_VectorSpace_of_LinearOperators b1,b2)),
(BoundedLinearOperatorsNorm b1,b2) #);
theorem Th37: :: LOPBAN_1:37
theorem Th38: :: LOPBAN_1:38
theorem Th39: :: LOPBAN_1:39
theorem Th40: :: LOPBAN_1:40
theorem Th41: :: LOPBAN_1:41
theorem Th42: :: LOPBAN_1:42
theorem Th43: :: LOPBAN_1:43
theorem Th44: :: LOPBAN_1:44
theorem Th45: :: LOPBAN_1:45
theorem Th46: :: LOPBAN_1:46
:: deftheorem Def16 defines complete LOPBAN_1:def 16 :
Lemma55:
for b1 being Real
for b2 being Real_Sequence st b2 is convergent & ex b3 being Nat st
for b4 being Nat st b3 <= b4 holds
b2 . b4 <= b1 holds
lim b2 <= b1
theorem Th47: :: LOPBAN_1:47
theorem Th48: :: LOPBAN_1:48
theorem Th49: :: LOPBAN_1:49