:: RSSPACE3 semantic presentation
:: deftheorem Def1 defines the_set_of_l1RealSequences RSSPACE3:def 1 :
theorem Th1: :: RSSPACE3:1
Lemma3:
RLSStruct(# the_set_of_l1RealSequences ,(Zero_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ) #) is Subspace of Linear_Space_of_RealSequences
by RSSPACE:13;
registration
cluster RLSStruct(#
the_set_of_l1RealSequences ,
(Zero_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),
(Add_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),
(Mult_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ) #)
-> Abelian add-associative right_zeroed right_complementable RealLinearSpace-like ;
coherence
( RLSStruct(# the_set_of_l1RealSequences ,(Zero_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ) #) is Abelian & RLSStruct(# the_set_of_l1RealSequences ,(Zero_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ) #) is add-associative & RLSStruct(# the_set_of_l1RealSequences ,(Zero_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ) #) is right_zeroed & RLSStruct(# the_set_of_l1RealSequences ,(Zero_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ) #) is right_complementable & RLSStruct(# the_set_of_l1RealSequences ,(Zero_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ) #) is RealLinearSpace-like )
by RSSPACE:13;
end;
Lemma4:
RLSStruct(# the_set_of_l1RealSequences ,(Zero_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ) #) is RealLinearSpace
;
Lemma5:
ex b1 being Function of the_set_of_l1RealSequences , REAL st
for b2 being set st b2 in the_set_of_l1RealSequences holds
b1 . b2 = Sum (abs (seq_id b2))
:: deftheorem Def2 defines l_norm RSSPACE3:def 2 :
registration
let c1 be non
empty set ;
let c2 be
Element of
c1;
let c3 be
BinOp of
c1;
let c4 be
Function of
[:REAL ,c1:],
c1;
let c5 be
Function of
c1,
REAL ;
cluster NORMSTR(#
a1,
a2,
a3,
a4,
a5 #)
-> non
empty ;
coherence
not NORMSTR(# c1,c2,c3,c4,c5 #) is empty
by STRUCT_0:def 1;
end;
theorem Th2: :: RSSPACE3:2
canceled;
theorem Th3: :: RSSPACE3:3
canceled;
theorem Th4: :: RSSPACE3:4
theorem Th5: :: RSSPACE3:5
theorem Th6: :: RSSPACE3:6
theorem Th7: :: RSSPACE3:7
definition
func l1_Space -> non
empty NORMSTR equals :: RSSPACE3:def 3
NORMSTR(#
the_set_of_l1RealSequences ,
(Zero_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),
(Add_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),
(Mult_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),
l_norm #);
coherence
NORMSTR(# the_set_of_l1RealSequences ,(Zero_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),l_norm #) is non empty NORMSTR
;
end;
:: deftheorem Def3 defines l1_Space RSSPACE3:def 3 :
theorem Th8: :: RSSPACE3:8
theorem Th9: :: RSSPACE3:9
Lemma13:
for b1 being Real
for b2, b3 being Real_Sequence st b2 is convergent & b3 is convergent holds
for b4 being Real_Sequence st ( for b5 being Nat holds b4 . b5 = (abs ((b2 . b5) - b1)) + (b3 . b5) ) holds
( b4 is convergent & lim b4 = (abs ((lim b2) - b1)) + (lim b3) )
:: deftheorem Def4 defines dist RSSPACE3:def 4 :
:: deftheorem Def5 defines CCauchy RSSPACE3:def 5 :
theorem Th10: :: RSSPACE3:10
theorem Th11: :: RSSPACE3:11