:: RSSPACE3  semantic presentation
:: deftheorem Def1   defines the_set_of_l1RealSequences RSSPACE3:def 1 : 
theorem Th1: :: RSSPACE3:1
Lemma3: 
 RLSStruct(# the_set_of_l1RealSequences ,(Zero_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ) #) is    Subspace of  Linear_Space_of_RealSequences 
 
by RSSPACE:13;
registration
cluster  RLSStruct(# 
the_set_of_l1RealSequences ,
(Zero_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),
(Add_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),
(Mult_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ) #)
 -> Abelian add-associative right_zeroed right_complementable RealLinearSpace-like ;
coherence 
(  RLSStruct(# the_set_of_l1RealSequences ,(Zero_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ) #) is Abelian &  RLSStruct(# the_set_of_l1RealSequences ,(Zero_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ) #) is add-associative &  RLSStruct(# the_set_of_l1RealSequences ,(Zero_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ) #) is right_zeroed &  RLSStruct(# the_set_of_l1RealSequences ,(Zero_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ) #) is right_complementable &  RLSStruct(# the_set_of_l1RealSequences ,(Zero_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ) #) is RealLinearSpace-like )
 by RSSPACE:13;
 
end;
 
Lemma4: 
 RLSStruct(# the_set_of_l1RealSequences ,(Zero_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ) #) is   RealLinearSpace
 
;
Lemma5: 
ex b1 being  Function of  the_set_of_l1RealSequences , REAL  st 
for b2 being   set   st b2 in  the_set_of_l1RealSequences  holds 
b1 . b2 =  Sum (abs (seq_id b2))
 
:: deftheorem Def2   defines l_norm RSSPACE3:def 2 : 
registration
let c1 be  non 
empty  set ;
let c2 be    
Element of 
c1;
let c3 be   
BinOp of 
c1;
let c4 be   
Function of 
[:REAL ,c1:],
c1;
let c5 be   
Function of 
c1, 
REAL ;
cluster  NORMSTR(# 
a1,
a2,
a3,
a4,
a5 #)
 -> non 
empty ;
coherence 
not  NORMSTR(# c1,c2,c3,c4,c5 #) is empty
 by STRUCT_0:def 1;
 
end;
 
theorem Th2: :: RSSPACE3:2
canceled; 
theorem Th3: :: RSSPACE3:3
canceled; 
theorem Th4: :: RSSPACE3:4
theorem Th5: :: RSSPACE3:5
theorem Th6: :: RSSPACE3:6
theorem Th7: :: RSSPACE3:7
definition
func  l1_Space  ->  non 
empty  NORMSTR  equals :: RSSPACE3:def 3
 NORMSTR(# 
the_set_of_l1RealSequences ,
(Zero_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),
(Add_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),
(Mult_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),
l_norm  #);
coherence 
 NORMSTR(# the_set_of_l1RealSequences ,(Zero_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_l1RealSequences ,Linear_Space_of_RealSequences ),l_norm  #) is  non empty  NORMSTR 
 ;
 
end;
 
:: deftheorem Def3   defines l1_Space RSSPACE3:def 3 : 
theorem Th8: :: RSSPACE3:8
theorem Th9: :: RSSPACE3:9
Lemma13: 
for b1 being  Real
 for b2, b3 being  Real_Sequence  st b2 is convergent & b3 is convergent holds 
for b4 being  Real_Sequence  st ( for b5 being  Nat holds  b4 . b5 = (abs ((b2 . b5) - b1)) + (b3 . b5) ) holds 
( b4 is convergent &  lim b4 = (abs ((lim b2) - b1)) + (lim b3) )
 
:: deftheorem Def4   defines dist RSSPACE3:def 4 : 
:: deftheorem Def5   defines CCauchy RSSPACE3:def 5 : 
theorem Th10: :: RSSPACE3:10
theorem Th11: :: RSSPACE3:11