:: RSSPACE semantic presentation
:: deftheorem Def1 defines the_set_of_RealSequences RSSPACE:def 1 :
:: deftheorem Def2 defines seq_id RSSPACE:def 2 :
:: deftheorem Def3 defines R_id RSSPACE:def 3 :
theorem Th1: :: RSSPACE:1
theorem Th2: :: RSSPACE:2
:: deftheorem Def4 defines l_add RSSPACE:def 4 :
definition
func l_mult -> Function of
[:REAL ,the_set_of_RealSequences :],
the_set_of_RealSequences means :
Def5:
:: RSSPACE:def 5
for
b1,
b2 being
set st
b1 in REAL &
b2 in the_set_of_RealSequences holds
a1 . [b1,b2] = (R_id b1) (#) (seq_id b2);
existence
ex b1 being Function of [:REAL ,the_set_of_RealSequences :], the_set_of_RealSequences st
for b2, b3 being set st b2 in REAL & b3 in the_set_of_RealSequences holds
b1 . [b2,b3] = (R_id b2) (#) (seq_id b3)
by Th2;
uniqueness
for b1, b2 being Function of [:REAL ,the_set_of_RealSequences :], the_set_of_RealSequences st ( for b3, b4 being set st b3 in REAL & b4 in the_set_of_RealSequences holds
b1 . [b3,b4] = (R_id b3) (#) (seq_id b4) ) & ( for b3, b4 being set st b3 in REAL & b4 in the_set_of_RealSequences holds
b2 . [b3,b4] = (R_id b3) (#) (seq_id b4) ) holds
b1 = b2
end;
:: deftheorem Def5 defines l_mult RSSPACE:def 5 :
:: deftheorem Def6 defines Zeroseq RSSPACE:def 6 :
theorem Th3: :: RSSPACE:3
theorem Th4: :: RSSPACE:4
theorem Th5: :: RSSPACE:5
Lemma12:
for b1, b2 being VECTOR of RLSStruct(# the_set_of_RealSequences ,Zeroseq ,l_add ,l_mult #) holds b1 + b2 = b2 + b1
;
theorem Th6: :: RSSPACE:6
theorem Th7: :: RSSPACE:7
theorem Th8: :: RSSPACE:8
theorem Th9: :: RSSPACE:9
theorem Th10: :: RSSPACE:10
theorem Th11: :: RSSPACE:11
theorem Th12: :: RSSPACE:12
definition
func Linear_Space_of_RealSequences -> RealLinearSpace equals :: RSSPACE:def 7
RLSStruct(#
the_set_of_RealSequences ,
Zeroseq ,
l_add ,
l_mult #);
correctness
coherence
RLSStruct(# the_set_of_RealSequences ,Zeroseq ,l_add ,l_mult #) is RealLinearSpace;
by Lemma12, Th6, Th7, Th8, Th9, Th10, Th11, Th12, RLVECT_1:7;
end;
:: deftheorem Def7 defines Linear_Space_of_RealSequences RSSPACE:def 7 :
:: deftheorem Def8 defines Add_ RSSPACE:def 8 :
:: deftheorem Def9 defines Mult_ RSSPACE:def 9 :
:: deftheorem Def10 defines Zero_ RSSPACE:def 10 :
theorem Th13: :: RSSPACE:13
:: deftheorem Def11 defines the_set_of_l2RealSequences RSSPACE:def 11 :
theorem Th14: :: RSSPACE:14
canceled;
theorem Th15: :: RSSPACE:15
theorem Th16: :: RSSPACE:16
theorem Th17: :: RSSPACE:17
theorem Th18: :: RSSPACE:18
definition
func l_scalar -> Function of
[:the_set_of_l2RealSequences ,the_set_of_l2RealSequences :],
REAL means :: RSSPACE:def 12
for
b1,
b2 being
set st
b1 in the_set_of_l2RealSequences &
b2 in the_set_of_l2RealSequences holds
a1 . [b1,b2] = Sum ((seq_id b1) (#) (seq_id b2));
existence
ex b1 being Function of [:the_set_of_l2RealSequences ,the_set_of_l2RealSequences :], REAL st
for b2, b3 being set st b2 in the_set_of_l2RealSequences & b3 in the_set_of_l2RealSequences holds
b1 . [b2,b3] = Sum ((seq_id b2) (#) (seq_id b3))
by Th18;
uniqueness
for b1, b2 being Function of [:the_set_of_l2RealSequences ,the_set_of_l2RealSequences :], REAL st ( for b3, b4 being set st b3 in the_set_of_l2RealSequences & b4 in the_set_of_l2RealSequences holds
b1 . [b3,b4] = Sum ((seq_id b3) (#) (seq_id b4)) ) & ( for b3, b4 being set st b3 in the_set_of_l2RealSequences & b4 in the_set_of_l2RealSequences holds
b2 . [b3,b4] = Sum ((seq_id b3) (#) (seq_id b4)) ) holds
b1 = b2
end;
:: deftheorem Def12 defines l_scalar RSSPACE:def 12 :
registration
cluster UNITSTR(#
the_set_of_l2RealSequences ,
(Zero_ the_set_of_l2RealSequences ,Linear_Space_of_RealSequences ),
(Add_ the_set_of_l2RealSequences ,Linear_Space_of_RealSequences ),
(Mult_ the_set_of_l2RealSequences ,Linear_Space_of_RealSequences ),
l_scalar #)
-> non
empty ;
coherence
not UNITSTR(# the_set_of_l2RealSequences ,(Zero_ the_set_of_l2RealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_l2RealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_l2RealSequences ,Linear_Space_of_RealSequences ),l_scalar #) is empty
;
end;
definition
func l2_Space -> non
empty UNITSTR equals :: RSSPACE:def 13
UNITSTR(#
the_set_of_l2RealSequences ,
(Zero_ the_set_of_l2RealSequences ,Linear_Space_of_RealSequences ),
(Add_ the_set_of_l2RealSequences ,Linear_Space_of_RealSequences ),
(Mult_ the_set_of_l2RealSequences ,Linear_Space_of_RealSequences ),
l_scalar #);
coherence
UNITSTR(# the_set_of_l2RealSequences ,(Zero_ the_set_of_l2RealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_l2RealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_l2RealSequences ,Linear_Space_of_RealSequences ),l_scalar #) is non empty UNITSTR
;
end;
:: deftheorem Def13 defines l2_Space RSSPACE:def 13 :
theorem Th19: :: RSSPACE:19
theorem Th20: :: RSSPACE:20
theorem Th21: :: RSSPACE:21