:: MSSCYC_1 semantic presentation
theorem Th1: :: MSSCYC_1:1
:: deftheorem Def1 defines Chain MSSCYC_1:def 1 :
theorem Th2: :: MSSCYC_1:2
:: deftheorem Def2 defines cyclic MSSCYC_1:def 2 :
:: deftheorem Def3 defines empty MSSCYC_1:def 3 :
theorem Th3: :: MSSCYC_1:3
theorem Th4: :: MSSCYC_1:4
theorem Th5: :: MSSCYC_1:5
Lemma7:
for b1 being non empty Graph
for b2 being Chain of b1
for b3 being FinSequence of the Vertices of b1 st b2 is cyclic & b3 is_vertex_seq_of b2 holds
b3 . 1 = b3 . (len b3)
theorem Th6: :: MSSCYC_1:6
theorem Th7: :: MSSCYC_1:7
theorem Th8: :: MSSCYC_1:8
theorem Th9: :: MSSCYC_1:9
theorem Th10: :: MSSCYC_1:10
theorem Th11: :: MSSCYC_1:11
theorem Th12: :: MSSCYC_1:12
theorem Th13: :: MSSCYC_1:13
theorem Th14: :: MSSCYC_1:14
theorem Th15: :: MSSCYC_1:15
theorem Th16: :: MSSCYC_1:16
theorem Th17: :: MSSCYC_1:17
theorem Th18: :: MSSCYC_1:18
:: deftheorem Def4 defines directed_cycle-less MSSCYC_1:def 4 :
:: deftheorem Def5 defines well-founded MSSCYC_1:def 5 :
theorem Th19: :: MSSCYC_1:19
theorem Th20: :: MSSCYC_1:20
theorem Th21: :: MSSCYC_1:21
theorem Th22: :: MSSCYC_1:22
theorem Th23: :: MSSCYC_1:23
theorem Th24: :: MSSCYC_1:24
canceled;
theorem Th25: :: MSSCYC_1:25
:: deftheorem Def6 defines finitely_operated MSSCYC_1:def 6 :
theorem Th26: :: MSSCYC_1:26
theorem Th27: :: MSSCYC_1:27
theorem Th28: :: MSSCYC_1:28