:: MSUALG_1 semantic presentation
:: deftheorem Def1 MSUALG_1:def 1 :
canceled;
:: deftheorem Def2 MSUALG_1:def 2 :
canceled;
:: deftheorem Def3 MSUALG_1:def 3 :
canceled;
:: deftheorem Def4 MSUALG_1:def 4 :
canceled;
:: deftheorem Def5 defines void MSUALG_1:def 5 :
:: deftheorem Def6 defines the_arity_of MSUALG_1:def 6 :
:: deftheorem Def7 defines the_result_sort_of MSUALG_1:def 7 :
:: deftheorem Def8 defines non-empty MSUALG_1:def 8 :
:: deftheorem Def9 defines Args MSUALG_1:def 9 :
:: deftheorem Def10 defines Result MSUALG_1:def 10 :
:: deftheorem Def11 defines Den MSUALG_1:def 11 :
theorem Th1: :: MSUALG_1:1
canceled;
theorem Th2: :: MSUALG_1:2
canceled;
theorem Th3: :: MSUALG_1:3
canceled;
theorem Th4: :: MSUALG_1:4
canceled;
theorem Th5: :: MSUALG_1:5
canceled;
theorem Th6: :: MSUALG_1:6
Lemma3:
for b1 being non empty set
for b2 being non empty homogeneous quasi_total PartFunc of b1 * ,b1 holds dom b2 = (arity b2) -tuples_on b1
theorem Th7: :: MSUALG_1:7
theorem Th8: :: MSUALG_1:8
theorem Th9: :: MSUALG_1:9
:: deftheorem Def12 defines segmental MSUALG_1:def 12 :
theorem Th10: :: MSUALG_1:10
Lemma9:
for b1 being Universal_Algebra
for b2 being Function of dom (signature b1),{0} * st b2 = (*--> 0) * (signature b1) holds
( not ManySortedSign(# {0},(dom (signature b1)),b2,((dom (signature b1)) --> 0) #) is empty & ManySortedSign(# {0},(dom (signature b1)),b2,((dom (signature b1)) --> 0) #) is segmental & ManySortedSign(# {0},(dom (signature b1)),b2,((dom (signature b1)) --> 0) #) is trivial & not ManySortedSign(# {0},(dom (signature b1)),b2,((dom (signature b1)) --> 0) #) is void & ManySortedSign(# {0},(dom (signature b1)),b2,((dom (signature b1)) --> 0) #) is strict )
:: deftheorem Def13 defines MSSign MSUALG_1:def 13 :
:: deftheorem Def14 defines MSSorts MSUALG_1:def 14 :
:: deftheorem Def15 defines MSCharact MSUALG_1:def 15 :
:: deftheorem Def16 defines MSAlg MSUALG_1:def 16 :
:: deftheorem Def17 defines the_sort_of MSUALG_1:def 17 :
theorem Th11: :: MSUALG_1:11
theorem Th12: :: MSUALG_1:12
theorem Th13: :: MSUALG_1:13
theorem Th14: :: MSUALG_1:14
:: deftheorem Def18 defines the_charact_of MSUALG_1:def 18 :
:: deftheorem Def19 defines 1-Alg MSUALG_1:def 19 :
theorem Th15: :: MSUALG_1:15
theorem Th16: :: MSUALG_1:16