:: PARDEPAP semantic presentation
theorem Th1: :: PARDEPAP:1
for
b1 being
AffinPlane st
b1 satisfies_PAP holds
for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st
b2,
b3 // b2,
b4 &
b5,
b6 // b5,
b7 &
b2,
b6 // b3,
b5 &
b3,
b7 // b4,
b6 holds
b4,
b5 // b2,
b7
theorem Th2: :: PARDEPAP:2
for
b1 being
AffinPlane st
b1 satisfies_DES holds
for
b2,
b3,
b4,
b5,
b6,
b7,
b8 being
Element of
b1 st not
b2,
b3 // b2,
b5 & not
b2,
b3 // b2,
b7 &
b2,
b3 // b2,
b4 &
b2,
b5 // b2,
b6 &
b2,
b7 // b2,
b8 &
b3,
b5 // b4,
b6 &
b3,
b7 // b4,
b8 holds
b5,
b7 // b6,
b8
theorem Th3: :: PARDEPAP:3
for
b1 being
AffinPlane st
b1 satisfies_des holds
for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st not
b2,
b3 // b2,
b4 & not
b2,
b3 // b2,
b6 &
b2,
b3 // b4,
b5 &
b2,
b3 // b6,
b7 &
b2,
b4 // b3,
b5 &
b2,
b6 // b3,
b7 holds
b4,
b6 // b5,
b7
theorem Th4: :: PARDEPAP:4
canceled;
theorem Th5: :: PARDEPAP:5
ex
b1 being
AffinPlane st
( ( for
b2,
b3,
b4,
b5,
b6,
b7,
b8 being
Element of
b1 st not
b2,
b3 // b2,
b5 & not
b2,
b3 // b2,
b7 &
b2,
b3 // b2,
b4 &
b2,
b5 // b2,
b6 &
b2,
b7 // b2,
b8 &
b3,
b5 // b4,
b6 &
b3,
b7 // b4,
b8 holds
b5,
b7 // b6,
b8 ) & ( for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st not
b2,
b3 // b2,
b4 & not
b2,
b3 // b2,
b6 &
b2,
b3 // b4,
b5 &
b2,
b3 // b6,
b7 &
b2,
b4 // b3,
b5 &
b2,
b6 // b3,
b7 holds
b4,
b6 // b5,
b7 ) & ( for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st
b2,
b3 // b2,
b4 &
b5,
b6 // b5,
b7 &
b2,
b6 // b3,
b5 &
b3,
b7 // b4,
b6 holds
b4,
b5 // b2,
b7 ) & ( for
b2,
b3,
b4,
b5 being
Element of
b1 st not
b2,
b3 // b2,
b4 &
b2,
b3 // b4,
b5 &
b2,
b4 // b3,
b5 holds
not
b2,
b5 // b3,
b4 ) )
theorem Th6: :: PARDEPAP:6
for
b1 being
AffinPlane for
b2,
b3 being
Element of
b1 ex
b4 being
Element of
b1 st
for
b5,
b6 being
Element of
b1 holds
(
b2,
b3 // b2,
b4 & ex
b7 being
Element of
b1 st
(
b2,
b4 // b2,
b5 implies (
b2,
b6 // b2,
b7 &
b4,
b6 // b5,
b7 ) ) )