:: POLYEQ_1 semantic presentation
:: deftheorem Def1 defines Poly1 POLYEQ_1:def 1 :
theorem Th1: :: POLYEQ_1:1
theorem Th2: :: POLYEQ_1:2
theorem Th3: :: POLYEQ_1:3
:: deftheorem Def2 defines Poly2 POLYEQ_1:def 2 :
theorem Th4: :: POLYEQ_1:4
for
b1,
b2,
b3,
b4,
b5,
b6 being
complex number st ( for
b7 being
real number holds
Poly2 b1,
b2,
b3,
b7 = Poly2 b4,
b5,
b6,
b7 ) holds
(
b1 = b4 &
b2 = b5 &
b3 = b6 )
theorem Th5: :: POLYEQ_1:5
for
b1,
b2,
b3 being
real number st
b1 <> 0 &
delta b1,
b2,
b3 >= 0 holds
for
b4 being
real number holds
( not
Poly2 b1,
b2,
b3,
b4 = 0 or
b4 = ((- b2) + (sqrt (delta b1,b2,b3))) / (2 * b1) or
b4 = ((- b2) - (sqrt (delta b1,b2,b3))) / (2 * b1) )
theorem Th6: :: POLYEQ_1:6
theorem Th7: :: POLYEQ_1:7
theorem Th8: :: POLYEQ_1:8
theorem Th9: :: POLYEQ_1:9
theorem Th10: :: POLYEQ_1:10
:: deftheorem Def3 defines Quard POLYEQ_1:def 3 :
theorem Th11: :: POLYEQ_1:11
:: deftheorem Def4 defines Poly3 POLYEQ_1:def 4 :
registration
let c1,
c2,
c3,
c4,
c5 be
real number ;
cluster Poly3 a1,
a2,
a3,
a4,
a5 -> real ;
coherence
Poly3 c1,c2,c3,c4,c5 is real
;
end;
definition
let c1,
c2,
c3,
c4,
c5 be
Real;
redefine func Poly3 as
Poly3 c1,
c2,
c3,
c4,
c5 -> Real;
coherence
Poly3 c1,c2,c3,c4,c5 is Real
by XREAL_0:def 1;
end;
theorem Th12: :: POLYEQ_1:12
for
b1,
b2,
b3,
b4,
b5,
b6,
b7,
b8 being
real number st ( for
b9 being
real number holds
Poly3 b1,
b2,
b3,
b4,
b9 = Poly3 b5,
b6,
b7,
b8,
b9 ) holds
(
b1 = b5 &
b2 = b6 &
b3 = b7 &
b4 = b8 )
:: deftheorem Def5 defines Tri POLYEQ_1:def 5 :
for
b1,
b2,
b3,
b4,
b5 being
real number holds
Tri b1,
b3,
b4,
b5,
b2 = b1 * (((b2 - b3) * (b2 - b4)) * (b2 - b5));
registration
let c1,
c2,
c3,
c4,
c5 be
real number ;
cluster Tri a1,
a3,
a4,
a5,
a2 -> real ;
coherence
Tri c1,c3,c4,c5,c2 is real
;
end;
definition
let c1,
c2,
c3,
c4,
c5 be
Real;
redefine func Tri as
Tri c1,
c3,
c4,
c5,
c2 -> Real;
coherence
Tri c1,c3,c4,c5,c2 is Real
by XREAL_0:def 1;
end;
theorem Th13: :: POLYEQ_1:13
for
b1,
b2,
b3,
b4,
b5,
b6,
b7 being
real number st
b1 <> 0 & ( for
b8 being
real number holds
Poly3 b1,
b2,
b3,
b4,
b8 = Tri b1,
b5,
b6,
b7,
b8 ) holds
(
b2 / b1 = - ((b5 + b6) + b7) &
b3 / b1 = ((b5 * b6) + (b6 * b7)) + (b5 * b7) &
b4 / b1 = - ((b5 * b6) * b7) )
theorem Th14: :: POLYEQ_1:14
theorem Th15: :: POLYEQ_1:15
for
b1,
b2,
b3,
b4,
b5 being
real number st
b1 <> 0 &
Poly3 b1,
b2,
b3,
b4,
b5 = 0 holds
for
b6,
b7,
b8,
b9,
b10 being
real number st
b10 = b5 + (b2 / (3 * b1)) &
b9 = - (b2 / (3 * b1)) &
b6 = b2 / b1 &
b7 = b3 / b1 &
b8 = b4 / b1 holds
((b10 |^ 3) + ((((3 * b9) + b6) * (b10 ^2 )) + ((((3 * (b9 ^2 )) + (2 * (b6 * b9))) + b7) * b10))) + (((b9 |^ 3) + (b6 * (b9 ^2 ))) + ((b7 * b9) + b8)) = 0
theorem Th16: :: POLYEQ_1:16
for
b1,
b2,
b3,
b4,
b5 being
real number st
b1 <> 0 &
Poly3 b1,
b2,
b3,
b4,
b5 = 0 holds
for
b6,
b7,
b8,
b9,
b10 being
real number st
b10 = b5 + (b2 / (3 * b1)) &
b9 = - (b2 / (3 * b1)) &
b6 = b2 / b1 &
b7 = b3 / b1 &
b8 = b4 / b1 holds
(((b10 |^ 3) + (0 * (b10 ^2 ))) + (((((3 * b1) * b3) - (b2 ^2 )) / (3 * (b1 ^2 ))) * b10)) + ((2 * ((b2 / (3 * b1)) |^ 3)) + ((((3 * b1) * b4) - (b2 * b3)) / (3 * (b1 ^2 )))) = 0
theorem Th17: :: POLYEQ_1:17
for
b1,
b2,
b3,
b4,
b5 being
real number st
(((b1 |^ 3) + (0 * (b1 ^2 ))) + (((((3 * b2) * b3) - (b4 ^2 )) / (3 * (b2 ^2 ))) * b1)) + ((2 * ((b4 / (3 * b2)) |^ 3)) + ((((3 * b2) * b5) - (b4 * b3)) / (3 * (b2 ^2 )))) = 0 holds
for
b6,
b7 being
real number st
b6 = (((3 * b2) * b3) - (b4 ^2 )) / (3 * (b2 ^2 )) &
b7 = (2 * ((b4 / (3 * b2)) |^ 3)) + ((((3 * b2) * b5) - (b4 * b3)) / (3 * (b2 ^2 ))) holds
Poly3 1,0,
b6,
b7,
b1 = 0 ;
theorem Th18: :: POLYEQ_1:18
theorem Th19: :: POLYEQ_1:19
theorem Th20: :: POLYEQ_1:20
for
b1,
b2,
b3,
b4 being
real number st
b1 <> 0 &
delta b1,
b2,
b3 > 0 &
Poly3 0,
b1,
b2,
b3,
b4 = 0 & not
b4 = ((- b2) + (sqrt (delta b1,b2,b3))) / (2 * b1) holds
b4 = ((- b2) - (sqrt (delta b1,b2,b3))) / (2 * b1)
theorem Th21: :: POLYEQ_1:21
for
b1,
b2,
b3,
b4,
b5,
b6 being
real number st
b1 <> 0 &
b2 = b3 / b1 &
b4 = b5 / b1 &
Poly3 b1,0,
b3,
b5,
b6 = 0 holds
for
b7,
b8 being
real number st
b6 = b7 + b8 &
((3 * b8) * b7) + b2 = 0 & not
b6 = (3 -root ((- (b5 / (2 * b1))) + (sqrt (((b5 ^2 ) / (4 * (b1 ^2 ))) + ((b3 / (3 * b1)) |^ 3))))) + (3 -root ((- (b5 / (2 * b1))) - (sqrt (((b5 ^2 ) / (4 * (b1 ^2 ))) + ((b3 / (3 * b1)) |^ 3))))) & not
b6 = (3 -root ((- (b5 / (2 * b1))) + (sqrt (((b5 ^2 ) / (4 * (b1 ^2 ))) + ((b3 / (3 * b1)) |^ 3))))) + (3 -root ((- (b5 / (2 * b1))) + (sqrt (((b5 ^2 ) / (4 * (b1 ^2 ))) + ((b3 / (3 * b1)) |^ 3))))) holds
b6 = (3 -root ((- (b5 / (2 * b1))) - (sqrt (((b5 ^2 ) / (4 * (b1 ^2 ))) + ((b3 / (3 * b1)) |^ 3))))) + (3 -root ((- (b5 / (2 * b1))) - (sqrt (((b5 ^2 ) / (4 * (b1 ^2 ))) + ((b3 / (3 * b1)) |^ 3)))))
theorem Th22: :: POLYEQ_1:22
for
b1,
b2,
b3,
b4 being
real number st
b1 <> 0 &
delta b1,
b2,
b3 >= 0 &
Poly3 b1,
b2,
b3,0,
b4 = 0 & not
b4 = 0 & not
b4 = ((- b2) + (sqrt (delta b1,b2,b3))) / (2 * b1) holds
b4 = ((- b2) - (sqrt (delta b1,b2,b3))) / (2 * b1)
theorem Th23: :: POLYEQ_1:23