:: POLYEQ_2 semantic presentation
Lemma1:
4 = 2 * 2
;
definition
let c1,
c2,
c3,
c4,
c5,
c6 be
real number ;
func Four c1,
c2,
c3,
c4,
c5,
c6 -> set equals :: POLYEQ_2:def 1
((((a1 * (a6 |^ 4)) + (a2 * (a6 |^ 3))) + (a3 * (a6 ^2 ))) + (a4 * a6)) + a5;
correctness
coherence
((((c1 * (c6 |^ 4)) + (c2 * (c6 |^ 3))) + (c3 * (c6 ^2 ))) + (c4 * c6)) + c5 is set ;
;
end;
:: deftheorem Def1 defines Four POLYEQ_2:def 1 :
for
b1,
b2,
b3,
b4,
b5,
b6 being
real number holds
Four b1,
b2,
b3,
b4,
b5,
b6 = ((((b1 * (b6 |^ 4)) + (b2 * (b6 |^ 3))) + (b3 * (b6 ^2 ))) + (b4 * b6)) + b5;
registration
let c1,
c2,
c3,
c4,
c5,
c6 be
real number ;
cluster Four a1,
a2,
a3,
a4,
a5,
a6 -> real ;
coherence
Four c1,c2,c3,c4,c5,c6 is real
;
end;
theorem Th1: :: POLYEQ_2:1
for
b1,
b2,
b3,
b4 being
real number st
b1 <> 0 &
b3 <> 0 &
(b2 ^2 ) - ((4 * b1) * b3) > 0 &
Four b1,0,
b2,0,
b3,
b4 = 0 holds
(
b4 <> 0 & (
b4 = sqrt (((- b2) + (sqrt (delta b1,b2,b3))) / (2 * b1)) or
b4 = sqrt (((- b2) - (sqrt (delta b1,b2,b3))) / (2 * b1)) or
b4 = - (sqrt (((- b2) + (sqrt (delta b1,b2,b3))) / (2 * b1))) or
b4 = - (sqrt (((- b2) - (sqrt (delta b1,b2,b3))) / (2 * b1))) ) )
theorem Th2: :: POLYEQ_2:2
for
b1,
b2,
b3,
b4,
b5 being
real number st
b1 <> 0 &
b5 = b4 + (1 / b4) &
Four b1,
b2,
b3,
b2,
b1,
b4 = 0 holds
(
b4 <> 0 &
(((b1 * (b5 ^2 )) + (b2 * b5)) + b3) - (2 * b1) = 0 )
theorem Th3: :: POLYEQ_2:3
for
b1,
b2,
b3,
b4,
b5 being
real number st
b1 <> 0 &
((b2 ^2 ) - ((4 * b1) * b3)) + (8 * (b1 ^2 )) > 0 &
b5 = b4 + (1 / b4) &
Four b1,
b2,
b3,
b2,
b1,
b4 = 0 holds
for
b6,
b7 being
real number st
b6 = ((- b2) + (sqrt (((b2 ^2 ) - ((4 * b1) * b3)) + (8 * (b1 ^2 ))))) / (2 * b1) &
b7 = ((- b2) - (sqrt (((b2 ^2 ) - ((4 * b1) * b3)) + (8 * (b1 ^2 ))))) / (2 * b1) holds
(
b4 <> 0 & (
b4 = (b6 + (sqrt (delta 1,(- b6),1))) / 2 or
b4 = (b7 + (sqrt (delta 1,(- b7),1))) / 2 or
b4 = (b6 - (sqrt (delta 1,(- b6),1))) / 2 or
b4 = (b7 - (sqrt (delta 1,(- b7),1))) / 2 ) )
theorem Th4: :: POLYEQ_2:4
theorem Th5: :: POLYEQ_2:5
theorem Th6: :: POLYEQ_2:6
theorem Th7: :: POLYEQ_2:7
for
b1,
b2,
b3,
b4,
b5,
b6,
b7,
b8,
b9,
b10 being
real number st ( for
b11 being
real number holds
Four b1,
b2,
b3,
b4,
b5,
b11 = Four b6,
b7,
b8,
b9,
b10,
b11 ) holds
(
b5 = b10 &
((b1 - b2) + b3) - b4 = ((b6 - b7) + b8) - b9 &
((b1 + b2) + b3) + b4 = ((b6 + b7) + b8) + b9 )
theorem Th8: :: POLYEQ_2:8
for
b1,
b2,
b3,
b4,
b5,
b6,
b7,
b8,
b9,
b10 being
real number st ( for
b11 being
real number holds
Four b1,
b2,
b3,
b4,
b5,
b11 = Four b6,
b7,
b8,
b9,
b10,
b11 ) holds
(
b1 - b6 = b8 - b3 &
b2 - b7 = b9 - b4 )
theorem Th9: :: POLYEQ_2:9
for
b1,
b2,
b3,
b4,
b5,
b6,
b7,
b8,
b9,
b10 being
real number st ( for
b11 being
real number holds
Four b1,
b2,
b3,
b4,
b5,
b11 = Four b6,
b7,
b8,
b9,
b10,
b11 ) holds
(
b1 = b6 &
b2 = b7 &
b3 = b8 &
b4 = b9 &
b5 = b10 )
definition
let c1,
c2,
c3,
c4,
c5,
c6 be
real number ;
func Four0 c1,
c2,
c3,
c4,
c5,
c6 -> set equals :: POLYEQ_2:def 2
a1 * ((((a6 - a2) * (a6 - a3)) * (a6 - a4)) * (a6 - a5));
correctness
coherence
c1 * ((((c6 - c2) * (c6 - c3)) * (c6 - c4)) * (c6 - c5)) is set ;
;
end;
:: deftheorem Def2 defines Four0 POLYEQ_2:def 2 :
for
b1,
b2,
b3,
b4,
b5,
b6 being
real number holds
Four0 b1,
b2,
b3,
b4,
b5,
b6 = b1 * ((((b6 - b2) * (b6 - b3)) * (b6 - b4)) * (b6 - b5));
registration
let c1,
c2,
c3,
c4,
c5,
c6 be
real number ;
cluster Four0 a1,
a2,
a3,
a4,
a5,
a6 -> real ;
coherence
Four0 c1,c2,c3,c4,c5,c6 is real
;
end;
theorem Th10: :: POLYEQ_2:10
for
b1,
b2,
b3,
b4,
b5,
b6,
b7,
b8,
b9,
b10 being
real number st
b1 <> 0 & ( for
b11 being
real number holds
Four b1,
b2,
b3,
b4,
b5,
b11 = Four0 b1,
b7,
b8,
b9,
b10,
b11 ) holds
(((((b1 * (b6 |^ 4)) + (b2 * (b6 |^ 3))) + (b3 * (b6 ^2 ))) + (b4 * b6)) + b5) / b1 = (((((b6 ^2 ) * (b6 ^2 )) - (((b7 + b8) + b9) * ((b6 ^2 ) * b6))) + ((((b7 * b9) + (b8 * b9)) + (b7 * b8)) * (b6 ^2 ))) - (((b7 * b8) * b9) * b6)) - ((((b6 - b7) * (b6 - b8)) * (b6 - b9)) * b10)
theorem Th11: :: POLYEQ_2:11
for
b1,
b2,
b3,
b4,
b5,
b6,
b7,
b8,
b9,
b10 being
real number st
b1 <> 0 & ( for
b11 being
real number holds
Four b1,
b2,
b3,
b4,
b5,
b11 = Four0 b1,
b7,
b8,
b9,
b10,
b11 ) holds
(((((b1 * (b6 |^ 4)) + (b2 * (b6 |^ 3))) + (b3 * (b6 ^2 ))) + (b4 * b6)) + b5) / b1 = ((((b6 |^ 4) - ((((b7 + b8) + b9) + b10) * (b6 |^ 3))) + ((((((b7 * b8) + (b7 * b9)) + (b7 * b10)) + ((b8 * b9) + (b8 * b10))) + (b9 * b10)) * (b6 ^2 ))) - ((((((b7 * b8) * b9) + ((b7 * b8) * b10)) + ((b7 * b9) * b10)) + ((b8 * b9) * b10)) * b6)) + (((b7 * b8) * b9) * b10)
theorem Th12: :: POLYEQ_2:12
for
b1,
b2,
b3,
b4,
b5,
b6,
b7,
b8,
b9 being
real number st
b1 <> 0 & ( for
b10 being
real number holds
Four b1,
b2,
b3,
b4,
b5,
b10 = Four0 b1,
b6,
b7,
b8,
b9,
b10 ) holds
(
b2 / b1 = - (((b6 + b7) + b8) + b9) &
b3 / b1 = ((((b6 * b7) + (b6 * b8)) + (b6 * b9)) + ((b7 * b8) + (b7 * b9))) + (b8 * b9) &
b4 / b1 = - (((((b6 * b7) * b8) + ((b6 * b7) * b9)) + ((b6 * b8) * b9)) + ((b7 * b8) * b9)) &
b5 / b1 = ((b6 * b7) * b8) * b9 )
theorem Th13: :: POLYEQ_2:13