:: PRGCOR_2 semantic presentation
Lemma1:
for b1 being set
for b2 being Nat st b1 in b2 holds
b1 is Nat
theorem Th1: :: PRGCOR_2:1
for
b1,
b2 being
Nat holds
(
b1 in b2 iff
b1 < b2 )
Lemma3:
for b1 being XFinSequence
for b2 being set holds
( rng b1 c= b2 iff b1 is XFinSequence of b2 )
by ORDINAL1:def 8;
theorem Th2: :: PRGCOR_2:2
:: deftheorem Def1 defines FS2XFS PRGCOR_2:def 1 :
:: deftheorem Def2 defines XFS2FS PRGCOR_2:def 2 :
theorem Th3: :: PRGCOR_2:3
theorem Th4: :: PRGCOR_2:4
:: deftheorem Def3 defines FS2XFS* PRGCOR_2:def 3 :
:: deftheorem Def4 defines XFS2FS* PRGCOR_2:def 4 :
theorem Th5: :: PRGCOR_2:5
:: deftheorem Def5 defines is_an_xrep_of PRGCOR_2:def 5 :
theorem Th6: :: PRGCOR_2:6
:: deftheorem Def6 defines IFLGT PRGCOR_2:def 6 :
for
b1,
b2,
b3,
b4,
b5 being
set holds
( (
b1 in b2 implies
IFLGT b1,
b2,
b3,
b4,
b5 = b3 ) & (
b1 = b2 implies
IFLGT b1,
b2,
b3,
b4,
b5 = b4 ) & ( not
b1 in b2 & not
b1 = b2 implies
IFLGT b1,
b2,
b3,
b4,
b5 = b5 ) );
theorem Th7: :: PRGCOR_2:7
:: deftheorem Def7 defines inner_prd_prg PRGCOR_2:def 7 :
theorem Th8: :: PRGCOR_2:8
theorem Th9: :: PRGCOR_2:9
theorem Th10: :: PRGCOR_2:10
:: deftheorem Def8 defines scalar_prd_prg PRGCOR_2:def 8 :
theorem Th11: :: PRGCOR_2:11
:: deftheorem Def9 defines vector_minus_prg PRGCOR_2:def 9 :
theorem Th12: :: PRGCOR_2:12
:: deftheorem Def10 defines vector_add_prg PRGCOR_2:def 10 :
theorem Th13: :: PRGCOR_2:13
:: deftheorem Def11 defines vector_sub_prg PRGCOR_2:def 11 :
theorem Th14: :: PRGCOR_2:14