:: PROJDES1 semantic presentation
theorem Th1: :: PROJDES1:1
for
b1 being
up-3-dimensional CollProjectiveSpace for
b2,
b3,
b4 being
Element of
b1 st
b2,
b3,
b4 is_collinear holds
(
b3,
b4,
b2 is_collinear &
b4,
b2,
b3 is_collinear &
b3,
b2,
b4 is_collinear &
b2,
b4,
b3 is_collinear &
b4,
b3,
b2 is_collinear )
theorem Th2: :: PROJDES1:2
canceled;
theorem Th3: :: PROJDES1:3
canceled;
theorem Th4: :: PROJDES1:4
canceled;
theorem Th5: :: PROJDES1:5
theorem Th6: :: PROJDES1:6
theorem Th7: :: PROJDES1:7
theorem Th8: :: PROJDES1:8
for
b1 being
up-3-dimensional CollProjectiveSpace for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st not
b2,
b3,
b4 is_collinear &
b2,
b4,
b5 is_collinear &
b3,
b4,
b6 is_collinear &
b4 <> b5 &
b7,
b5,
b6 is_collinear &
b2,
b3,
b7 is_collinear &
b2 <> b7 holds
b6 <> b4
Lemma3:
for b1 being up-3-dimensional CollProjectiveSpace
for b2, b3, b4, b5, b6 being Element of b1 st not b2,b3,b4 is_collinear & b2,b3,b5 is_collinear & b2,b4,b6 is_collinear & b2 <> b5 holds
b5 <> b6
definition
let c1 be
up-3-dimensional CollProjectiveSpace;
let c2,
c3,
c4,
c5 be
Element of
c1;
pred c2,
c3,
c4,
c5 are_coplanar means :
Def1:
:: PROJDES1:def 1
ex
b1 being
Element of
a1 st
(
a2,
a3,
b1 is_collinear &
a4,
a5,
b1 is_collinear );
end;
:: deftheorem Def1 defines are_coplanar PROJDES1:def 1 :
for
b1 being
up-3-dimensional CollProjectiveSpace for
b2,
b3,
b4,
b5 being
Element of
b1 holds
(
b2,
b3,
b4,
b5 are_coplanar iff ex
b6 being
Element of
b1 st
(
b2,
b3,
b6 is_collinear &
b4,
b5,
b6 is_collinear ) );
theorem Th9: :: PROJDES1:9
canceled;
theorem Th10: :: PROJDES1:10
for
b1 being
up-3-dimensional CollProjectiveSpace for
b2,
b3,
b4,
b5 being
Element of
b1 st (
b2,
b3,
b4 is_collinear or
b3,
b4,
b5 is_collinear or
b4,
b5,
b2 is_collinear or
b5,
b2,
b3 is_collinear ) holds
b2,
b3,
b4,
b5 are_coplanar
Lemma6:
for b1 being up-3-dimensional CollProjectiveSpace
for b2, b3, b4, b5 being Element of b1 st b2,b3,b4,b5 are_coplanar holds
b3,b2,b4,b5 are_coplanar
Lemma7:
for b1 being up-3-dimensional CollProjectiveSpace
for b2, b3, b4, b5 being Element of b1 st b2,b3,b4,b5 are_coplanar holds
b3,b4,b5,b2 are_coplanar
theorem Th11: :: PROJDES1:11
for
b1 being
up-3-dimensional CollProjectiveSpace for
b2,
b3,
b4,
b5 being
Element of
b1 st
b2,
b3,
b4,
b5 are_coplanar holds
(
b3,
b4,
b5,
b2 are_coplanar &
b4,
b5,
b2,
b3 are_coplanar &
b5,
b2,
b3,
b4 are_coplanar &
b3,
b2,
b4,
b5 are_coplanar &
b4,
b3,
b5,
b2 are_coplanar &
b5,
b4,
b2,
b3 are_coplanar &
b2,
b5,
b3,
b4 are_coplanar &
b2,
b4,
b5,
b3 are_coplanar &
b3,
b5,
b2,
b4 are_coplanar &
b4,
b2,
b3,
b5 are_coplanar &
b5,
b3,
b4,
b2 are_coplanar &
b4,
b2,
b5,
b3 are_coplanar &
b5,
b3,
b2,
b4 are_coplanar &
b2,
b4,
b3,
b5 are_coplanar &
b3,
b5,
b4,
b2 are_coplanar &
b2,
b3,
b5,
b4 are_coplanar &
b2,
b5,
b4,
b3 are_coplanar &
b3,
b4,
b2,
b5 are_coplanar &
b3,
b2,
b5,
b4 are_coplanar &
b4,
b3,
b2,
b5 are_coplanar &
b4,
b5,
b3,
b2 are_coplanar &
b5,
b2,
b4,
b3 are_coplanar &
b5,
b4,
b3,
b2 are_coplanar )
Lemma9:
for b1 being up-3-dimensional CollProjectiveSpace
for b2, b3, b4, b5, b6 being Element of b1 st not b2,b3,b4 is_collinear & b2,b3,b4,b5 are_coplanar & b2,b3,b4,b6 are_coplanar holds
b2,b3,b5,b6 are_coplanar
theorem Th12: :: PROJDES1:12
for
b1 being
up-3-dimensional CollProjectiveSpace for
b2,
b3,
b4,
b5,
b6,
b7,
b8 being
Element of
b1 st not
b2,
b3,
b4 is_collinear &
b2,
b3,
b4,
b5 are_coplanar &
b2,
b3,
b4,
b6 are_coplanar &
b2,
b3,
b4,
b7 are_coplanar &
b2,
b3,
b4,
b8 are_coplanar holds
b5,
b6,
b7,
b8 are_coplanar
Lemma11:
for b1 being up-3-dimensional CollProjectiveSpace
for b2, b3, b4, b5, b6, b7 being Element of b1 st not b2,b3,b4 is_collinear & b2,b3,b4,b5 are_coplanar & b2,b3,b4,b6 are_coplanar & b2,b3,b4,b7 are_coplanar holds
b2,b5,b6,b7 are_coplanar
theorem Th13: :: PROJDES1:13
for
b1 being
up-3-dimensional CollProjectiveSpace for
b2,
b3,
b4,
b5,
b6,
b7,
b8 being
Element of
b1 st not
b2,
b3,
b4 is_collinear &
b5,
b6,
b7,
b2 are_coplanar &
b5,
b6,
b7,
b4 are_coplanar &
b5,
b6,
b7,
b3 are_coplanar &
b2,
b3,
b4,
b8 are_coplanar holds
b5,
b6,
b7,
b8 are_coplanar
Lemma12:
for b1 being up-3-dimensional CollProjectiveSpace
for b2, b3, b4, b5, b6 being Element of b1 st b2 <> b3 & b2,b3,b4 is_collinear & b5,b6,b2,b3 are_coplanar holds
b5,b6,b2,b4 are_coplanar
theorem Th14: :: PROJDES1:14
for
b1 being
up-3-dimensional CollProjectiveSpace for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st
b2 <> b3 &
b2,
b3,
b4 is_collinear &
b5,
b6,
b7,
b2 are_coplanar &
b5,
b6,
b7,
b3 are_coplanar holds
b5,
b6,
b7,
b4 are_coplanar
theorem Th15: :: PROJDES1:15
for
b1 being
up-3-dimensional CollProjectiveSpace for
b2,
b3,
b4,
b5,
b6,
b7,
b8 being
Element of
b1 st not
b2,
b3,
b4 is_collinear &
b2,
b3,
b4,
b5 are_coplanar &
b2,
b3,
b4,
b6 are_coplanar &
b2,
b3,
b4,
b7 are_coplanar &
b2,
b3,
b4,
b8 are_coplanar holds
ex
b9 being
Element of
b1 st
(
b5,
b6,
b9 is_collinear &
b7,
b8,
b9 is_collinear )
theorem Th16: :: PROJDES1:16
theorem Th17: :: PROJDES1:17
theorem Th18: :: PROJDES1:18
theorem Th19: :: PROJDES1:19
for
b1 being
up-3-dimensional CollProjectiveSpace for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st not
b2,
b3,
b4,
b5 are_coplanar &
b5,
b2,
b6 is_collinear &
b2 <> b6 holds
not
b2,
b3,
b4,
b6 are_coplanar
theorem Th20: :: PROJDES1:20
for
b1 being
up-3-dimensional CollProjectiveSpace for
b2,
b3,
b4,
b5,
b6,
b7,
b8,
b9,
b10 being
Element of
b1 st not
b2,
b3,
b4 is_collinear & not
b5,
b6,
b7 is_collinear &
b2,
b3,
b4,
b8 are_coplanar &
b2,
b3,
b4,
b9 are_coplanar &
b2,
b3,
b4,
b10 are_coplanar &
b5,
b6,
b7,
b8 are_coplanar &
b5,
b6,
b7,
b9 are_coplanar &
b5,
b6,
b7,
b10 are_coplanar & not
b2,
b3,
b4,
b5 are_coplanar holds
b8,
b9,
b10 is_collinear
theorem Th21: :: PROJDES1:21
for
b1 being
up-3-dimensional CollProjectiveSpace for
b2,
b3,
b4,
b5,
b6,
b7,
b8,
b9,
b10,
b11 being
Element of
b1 st
b2 <> b3 &
b4,
b2,
b3 is_collinear & not
b2,
b5,
b6,
b4 are_coplanar & not
b3,
b7,
b8 is_collinear &
b2,
b5,
b9 is_collinear &
b3,
b7,
b9 is_collinear &
b5,
b6,
b10 is_collinear &
b7,
b8,
b10 is_collinear &
b2,
b6,
b11 is_collinear &
b3,
b8,
b11 is_collinear holds
b9,
b10,
b11 is_collinear
theorem Th22: :: PROJDES1:22
for
b1 being
up-3-dimensional CollProjectiveSpace for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st not
b2,
b3,
b4,
b5 are_coplanar &
b2,
b3,
b4,
b6 are_coplanar & not
b2,
b3,
b6 is_collinear holds
not
b2,
b3,
b5,
b6 are_coplanar
theorem Th23: :: PROJDES1:23
for
b1 being
up-3-dimensional CollProjectiveSpace for
b2,
b3,
b4,
b5,
b6,
b7,
b8 being
Element of
b1 st not
b2,
b3,
b4,
b5 are_coplanar &
b5,
b2,
b6 is_collinear &
b5,
b3,
b7 is_collinear &
b5,
b4,
b8 is_collinear &
b5 <> b6 &
b5 <> b7 &
b5 <> b8 holds
( not
b6,
b7,
b8 is_collinear & not
b6,
b7,
b8,
b5 are_coplanar )
theorem Th24: :: PROJDES1:24
for
b1 being
up-3-dimensional CollProjectiveSpace for
b2,
b3,
b4,
b5,
b6,
b7,
b8,
b9,
b10,
b11,
b12,
b13 being
Element of
b1 st
b2,
b3,
b4,
b5 are_coplanar & not
b2,
b3,
b4,
b6 are_coplanar & not
b2,
b3,
b6,
b5 are_coplanar & not
b3,
b4,
b6,
b5 are_coplanar & not
b2,
b4,
b6,
b5 are_coplanar &
b5,
b6,
b7 is_collinear &
b5,
b2,
b8 is_collinear &
b5,
b3,
b9 is_collinear &
b5,
b4,
b10 is_collinear &
b2,
b6,
b11 is_collinear &
b8,
b7,
b11 is_collinear &
b3,
b6,
b12 is_collinear &
b9,
b7,
b12 is_collinear &
b4,
b6,
b13 is_collinear &
b5 <> b8 &
b5 <> b7 &
b6 <> b7 &
b5 <> b9 holds
not
b11,
b12,
b13 is_collinear
definition
let c1 be
up-3-dimensional CollProjectiveSpace;
let c2,
c3,
c4,
c5 be
Element of
c1;
pred c2,
c3,
c4,
c5 constitute_a_quadrangle means :
Def2:
:: PROJDES1:def 2
( not
a3,
a4,
a5 is_collinear & not
a2,
a3,
a4 is_collinear & not
a2,
a4,
a5 is_collinear & not
a2,
a5,
a3 is_collinear );
end;
:: deftheorem Def2 defines constitute_a_quadrangle PROJDES1:def 2 :
for
b1 being
up-3-dimensional CollProjectiveSpace for
b2,
b3,
b4,
b5 being
Element of
b1 holds
(
b2,
b3,
b4,
b5 constitute_a_quadrangle iff ( not
b3,
b4,
b5 is_collinear & not
b2,
b3,
b4 is_collinear & not
b2,
b4,
b5 is_collinear & not
b2,
b5,
b3 is_collinear ) );
Lemma24:
for b1 being up-3-dimensional CollProjectiveSpace
for b2, b3, b4, b5, b6, b7, b8, b9, b10, b11 being Element of b1 st b2 <> b3 & b2 <> b4 & b2 <> b5 & b6 <> b3 & b7 <> b4 & b2,b6,b7,b8 constitute_a_quadrangle & b2,b6,b3 is_collinear & b2,b7,b4 is_collinear & b2,b8,b5 is_collinear & b6,b7,b9 is_collinear & b3,b4,b9 is_collinear & b7,b8,b10 is_collinear & b4,b5,b10 is_collinear & b6,b8,b11 is_collinear & b3,b5,b11 is_collinear holds
b9,b10,b11 is_collinear
theorem Th25: :: PROJDES1:25
canceled;
theorem Th26: :: PROJDES1:26
for
b1 being
up-3-dimensional CollProjectiveSpace for
b2,
b3,
b4,
b5,
b6,
b7,
b8,
b9,
b10,
b11 being
Element of
b1 st not
b2,
b3,
b4 is_collinear & not
b2,
b4,
b5 is_collinear & not
b2,
b3,
b5 is_collinear &
b2,
b3,
b6 is_collinear &
b2,
b4,
b7 is_collinear &
b2,
b5,
b8 is_collinear &
b3,
b4,
b9 is_collinear &
b6,
b7,
b9 is_collinear &
b3 <> b6 &
b4,
b5,
b10 is_collinear &
b7,
b8,
b10 is_collinear &
b3,
b5,
b11 is_collinear &
b4 <> b7 &
b6,
b8,
b11 is_collinear &
b2 <> b6 &
b2 <> b7 &
b2 <> b8 holds
b10,
b11,
b9 is_collinear
theorem Th27: :: PROJDES1:27