:: SEMI_AF1 semantic presentation
definition
let c1 be non
empty AffinStruct ;
attr a1 is
Semi_Affine_Space-like means :
Def1:
:: SEMI_AF1:def 1
( ( for
b1,
b2 being
Element of
a1 holds
b1,
b2 // b2,
b1 ) & ( for
b1,
b2,
b3 being
Element of
a1 holds
b1,
b2 // b3,
b3 ) & ( for
b1,
b2,
b3,
b4,
b5,
b6 being
Element of
a1 st
b1 <> b2 &
b1,
b2 // b3,
b4 &
b1,
b2 // b5,
b6 holds
b3,
b4 // b5,
b6 ) & ( for
b1,
b2,
b3 being
Element of
a1 st
b1,
b2 // b1,
b3 holds
b2,
b1 // b2,
b3 ) & not for
b1,
b2,
b3 being
Element of
a1 holds
b1,
b2 // b1,
b3 & ( for
b1,
b2,
b3 being
Element of
a1 ex
b4 being
Element of
a1 st
(
b1,
b2 // b3,
b4 &
b1,
b3 // b2,
b4 ) ) & ( for
b1,
b2 being
Element of
a1 ex
b3 being
Element of
a1 st
for
b4,
b5 being
Element of
a1 holds
(
b1,
b2 // b1,
b3 & ex
b6 being
Element of
a1 st
(
b1,
b3 // b1,
b4 implies (
b1,
b5 // b1,
b6 &
b3,
b5 // b4,
b6 ) ) ) ) & ( for
b1,
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
a1 st not
b1,
b2 // b1,
b4 & not
b1,
b2 // b1,
b6 &
b1,
b2 // b1,
b3 &
b1,
b4 // b1,
b5 &
b1,
b6 // b1,
b7 &
b2,
b4 // b3,
b5 &
b2,
b6 // b3,
b7 holds
b4,
b6 // b5,
b7 ) & ( for
b1,
b2,
b3,
b4,
b5,
b6 being
Element of
a1 st not
b1,
b2 // b1,
b3 & not
b1,
b2 // b1,
b5 &
b1,
b2 // b3,
b4 &
b1,
b2 // b5,
b6 &
b1,
b3 // b2,
b4 &
b1,
b5 // b2,
b6 holds
b3,
b5 // b4,
b6 ) & ( for
b1,
b2,
b3,
b4,
b5,
b6 being
Element of
a1 st
b1,
b2 // b1,
b3 &
b4,
b5 // b4,
b6 &
b1,
b5 // b2,
b4 &
b2,
b6 // b3,
b5 holds
b3,
b4 // b1,
b6 ) & ( for
b1,
b2,
b3,
b4 being
Element of
a1 st not
b1,
b2 // b1,
b3 &
b1,
b2 // b3,
b4 &
b1,
b3 // b2,
b4 holds
not
b1,
b4 // b2,
b3 ) );
end;
:: deftheorem Def1 defines Semi_Affine_Space-like SEMI_AF1:def 1 :
for
b1 being non
empty AffinStruct holds
(
b1 is
Semi_Affine_Space-like iff ( ( for
b2,
b3 being
Element of
b1 holds
b2,
b3 // b3,
b2 ) & ( for
b2,
b3,
b4 being
Element of
b1 holds
b2,
b3 // b4,
b4 ) & ( for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st
b2 <> b3 &
b2,
b3 // b4,
b5 &
b2,
b3 // b6,
b7 holds
b4,
b5 // b6,
b7 ) & ( for
b2,
b3,
b4 being
Element of
b1 st
b2,
b3 // b2,
b4 holds
b3,
b2 // b3,
b4 ) & not for
b2,
b3,
b4 being
Element of
b1 holds
b2,
b3 // b2,
b4 & ( for
b2,
b3,
b4 being
Element of
b1 ex
b5 being
Element of
b1 st
(
b2,
b3 // b4,
b5 &
b2,
b4 // b3,
b5 ) ) & ( for
b2,
b3 being
Element of
b1 ex
b4 being
Element of
b1 st
for
b5,
b6 being
Element of
b1 holds
(
b2,
b3 // b2,
b4 & ex
b7 being
Element of
b1 st
(
b2,
b4 // b2,
b5 implies (
b2,
b6 // b2,
b7 &
b4,
b6 // b5,
b7 ) ) ) ) & ( for
b2,
b3,
b4,
b5,
b6,
b7,
b8 being
Element of
b1 st not
b2,
b3 // b2,
b5 & not
b2,
b3 // b2,
b7 &
b2,
b3 // b2,
b4 &
b2,
b5 // b2,
b6 &
b2,
b7 // b2,
b8 &
b3,
b5 // b4,
b6 &
b3,
b7 // b4,
b8 holds
b5,
b7 // b6,
b8 ) & ( for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st not
b2,
b3 // b2,
b4 & not
b2,
b3 // b2,
b6 &
b2,
b3 // b4,
b5 &
b2,
b3 // b6,
b7 &
b2,
b4 // b3,
b5 &
b2,
b6 // b3,
b7 holds
b4,
b6 // b5,
b7 ) & ( for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st
b2,
b3 // b2,
b4 &
b5,
b6 // b5,
b7 &
b2,
b6 // b3,
b5 &
b3,
b7 // b4,
b6 holds
b4,
b5 // b2,
b7 ) & ( for
b2,
b3,
b4,
b5 being
Element of
b1 st not
b2,
b3 // b2,
b4 &
b2,
b3 // b4,
b5 &
b2,
b4 // b3,
b5 holds
not
b2,
b5 // b3,
b4 ) ) );
theorem Th1: :: SEMI_AF1:1
canceled;
theorem Th2: :: SEMI_AF1:2
canceled;
theorem Th3: :: SEMI_AF1:3
canceled;
theorem Th4: :: SEMI_AF1:4
canceled;
theorem Th5: :: SEMI_AF1:5
canceled;
theorem Th6: :: SEMI_AF1:6
canceled;
theorem Th7: :: SEMI_AF1:7
canceled;
theorem Th8: :: SEMI_AF1:8
canceled;
theorem Th9: :: SEMI_AF1:9
canceled;
theorem Th10: :: SEMI_AF1:10
canceled;
theorem Th11: :: SEMI_AF1:11
canceled;
theorem Th12: :: SEMI_AF1:12
theorem Th13: :: SEMI_AF1:13
theorem Th14: :: SEMI_AF1:14
theorem Th15: :: SEMI_AF1:15
theorem Th16: :: SEMI_AF1:16
theorem Th17: :: SEMI_AF1:17
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5 being
Element of
b1 st
b2,
b3 // b4,
b5 holds
(
b3,
b2 // b4,
b5 &
b2,
b3 // b5,
b4 &
b3,
b2 // b5,
b4 &
b4,
b5 // b2,
b3 &
b5,
b4 // b2,
b3 &
b4,
b5 // b3,
b2 &
b5,
b4 // b3,
b2 )
theorem Th18: :: SEMI_AF1:18
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4 being
Element of
b1 st
b2,
b3 // b2,
b4 holds
(
b2,
b4 // b2,
b3 &
b3,
b2 // b2,
b4 &
b2,
b3 // b4,
b2 &
b2,
b4 // b3,
b2 &
b3,
b2 // b4,
b2 &
b4,
b2 // b2,
b3 &
b4,
b2 // b3,
b2 &
b3,
b2 // b3,
b4 &
b2,
b3 // b3,
b4 &
b3,
b2 // b4,
b3 &
b3,
b4 // b3,
b2 &
b2,
b3 // b4,
b3 &
b4,
b3 // b3,
b2 &
b3,
b4 // b2,
b3 &
b4,
b3 // b2,
b3 &
b4,
b2 // b4,
b3 &
b2,
b4 // b4,
b3 &
b4,
b2 // b3,
b4 &
b2,
b4 // b3,
b4 &
b4,
b3 // b4,
b2 &
b3,
b4 // b4,
b2 &
b4,
b3 // b2,
b4 &
b3,
b4 // b2,
b4 )
theorem Th19: :: SEMI_AF1:19
canceled;
theorem Th20: :: SEMI_AF1:20
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st
b2 <> b3 &
b4,
b5 // b2,
b3 &
b2,
b3 // b6,
b7 holds
b4,
b5 // b6,
b7
theorem Th21: :: SEMI_AF1:21
theorem Th22: :: SEMI_AF1:22
theorem Th23: :: SEMI_AF1:23
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5 being
Element of
b1 st
b2,
b3 // b2,
b4 &
b3,
b5 // b3,
b4 &
b5,
b2 // b5,
b4 holds
b2,
b3 // b2,
b5
theorem Th24: :: SEMI_AF1:24
canceled;
theorem Th25: :: SEMI_AF1:25
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st not
b2,
b3 // b2,
b4 &
b5 <> b6 &
b5,
b6 // b5,
b2 &
b5,
b6 // b5,
b3 holds
not
b5,
b6 // b5,
b4
theorem Th26: :: SEMI_AF1:26
theorem Th27: :: SEMI_AF1:27
canceled;
theorem Th28: :: SEMI_AF1:28
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4 being
Element of
b1 st not
b2,
b3 // b2,
b4 holds
( not
b2,
b3 // b4,
b2 & not
b3,
b2 // b2,
b4 & not
b3,
b2 // b4,
b2 & not
b2,
b4 // b2,
b3 & not
b2,
b4 // b3,
b2 & not
b4,
b2 // b2,
b3 & not
b4,
b2 // b3,
b2 & not
b3,
b2 // b3,
b4 & not
b3,
b2 // b4,
b3 & not
b2,
b3 // b3,
b4 & not
b2,
b3 // b4,
b3 & not
b3,
b4 // b3,
b2 & not
b3,
b4 // b2,
b3 & not
b4,
b3 // b2,
b3 & not
b4,
b3 // b3,
b2 & not
b4,
b3 // b4,
b2 & not
b4,
b3 // b2,
b4 & not
b3,
b4 // b4,
b2 & not
b3,
b4 // b2,
b4 & not
b4,
b2 // b4,
b3 & not
b4,
b2 // b3,
b4 & not
b2,
b4 // b3,
b4 & not
b2,
b4 // b4,
b3 )
theorem Th29: :: SEMI_AF1:29
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5,
b6,
b7,
b8,
b9 being
Element of
b1 st not
b2,
b3 // b4,
b5 &
b2,
b3 // b6,
b7 &
b4,
b5 // b8,
b9 &
b6 <> b7 &
b8 <> b9 holds
not
b6,
b7 // b8,
b9
theorem Th30: :: SEMI_AF1:30
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st not
b2,
b3 // b2,
b4 &
b2,
b3 // b5,
b6 &
b2,
b4 // b5,
b7 &
b3,
b4 // b6,
b7 &
b5 <> b6 holds
not
b5,
b6 // b5,
b7
theorem Th31: :: SEMI_AF1:31
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st not
b2,
b3 // b2,
b4 &
b2,
b4 // b5,
b6 &
b3,
b4 // b5,
b6 holds
b5 = b6
theorem Th32: :: SEMI_AF1:32
theorem Th33: :: SEMI_AF1:33
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5,
b6,
b7,
b8 being
Element of
b1 st not
b2,
b3 // b2,
b4 &
b2,
b3 // b5,
b6 &
b2,
b4 // b5,
b7 &
b2,
b4 // b5,
b8 &
b3,
b4 // b6,
b7 &
b3,
b4 // b6,
b8 holds
b7 = b8
theorem Th34: :: SEMI_AF1:34
theorem Th35: :: SEMI_AF1:35
:: deftheorem Def2 defines is_collinear SEMI_AF1:def 2 :
theorem Th36: :: SEMI_AF1:36
canceled;
theorem Th37: :: SEMI_AF1:37
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4 being
Element of
b1 st
b2,
b3,
b4 is_collinear holds
(
b2,
b4,
b3 is_collinear &
b3,
b2,
b4 is_collinear &
b3,
b4,
b2 is_collinear &
b4,
b2,
b3 is_collinear &
b4,
b3,
b2 is_collinear )
theorem Th38: :: SEMI_AF1:38
canceled;
theorem Th39: :: SEMI_AF1:39
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st not
b2,
b3,
b4 is_collinear &
b2,
b3 // b5,
b6 &
b2,
b4 // b5,
b7 &
b5 <> b6 &
b5 <> b7 holds
not
b5,
b6,
b7 is_collinear
theorem Th40: :: SEMI_AF1:40
theorem Th41: :: SEMI_AF1:41
theorem Th42: :: SEMI_AF1:42
theorem Th43: :: SEMI_AF1:43
theorem Th44: :: SEMI_AF1:44
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st not
b2,
b3,
b4 is_collinear &
b2,
b3 // b4,
b5 &
b4 <> b5 &
b4,
b5,
b6 is_collinear holds
not
b2,
b3,
b6 is_collinear
theorem Th45: :: SEMI_AF1:45
theorem Th46: :: SEMI_AF1:46
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st
b2 <> b3 &
b2 <> b4 &
b2,
b3,
b4 is_collinear &
b2,
b3,
b5 is_collinear &
b2,
b4,
b6 is_collinear holds
b3,
b4 // b5,
b6
theorem Th47: :: SEMI_AF1:47
canceled;
theorem Th48: :: SEMI_AF1:48
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st not
b2,
b3 // b4,
b5 &
b2,
b3,
b6 is_collinear &
b2,
b3,
b7 is_collinear &
b4,
b5,
b6 is_collinear &
b4,
b5,
b7 is_collinear holds
b6 = b7
theorem Th49: :: SEMI_AF1:49
theorem Th50: :: SEMI_AF1:50
theorem Th51: :: SEMI_AF1:51
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st not
b2,
b3,
b4 is_collinear &
b2,
b3,
b5 is_collinear &
b2,
b4,
b6 is_collinear &
b2,
b4,
b7 is_collinear &
b3,
b4 // b5,
b6 &
b3,
b4 // b5,
b6 &
b3,
b4 // b5,
b7 holds
b6 = b7
theorem Th52: :: SEMI_AF1:52
definition
let c1 be
Semi_Affine_Space;
let c2,
c3,
c4,
c5 be
Element of
c1;
pred parallelogram c2,
c3,
c4,
c5 means :
Def3:
:: SEMI_AF1:def 3
( not
a2,
a3,
a4 is_collinear &
a2,
a3 // a4,
a5 &
a2,
a4 // a3,
a5 );
end;
:: deftheorem Def3 defines parallelogram SEMI_AF1:def 3 :
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5 being
Element of
b1 holds
(
parallelogram b2,
b3,
b4,
b5 iff ( not
b2,
b3,
b4 is_collinear &
b2,
b3 // b4,
b5 &
b2,
b4 // b3,
b5 ) );
theorem Th53: :: SEMI_AF1:53
canceled;
theorem Th54: :: SEMI_AF1:54
theorem Th55: :: SEMI_AF1:55
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5 being
Element of
b1 st
parallelogram b2,
b3,
b4,
b5 holds
( not
b2,
b3,
b4 is_collinear & not
b3,
b2,
b5 is_collinear & not
b4,
b5,
b2 is_collinear & not
b5,
b4,
b3 is_collinear )
theorem Th56: :: SEMI_AF1:56
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5 being
Element of
b1 st
parallelogram b2,
b3,
b4,
b5 holds
( not
b2,
b3,
b4 is_collinear & not
b2,
b4,
b3 is_collinear & not
b2,
b3,
b5 is_collinear & not
b2,
b5,
b3 is_collinear & not
b2,
b4,
b5 is_collinear & not
b2,
b5,
b4 is_collinear & not
b3,
b2,
b4 is_collinear & not
b3,
b4,
b2 is_collinear & not
b3,
b2,
b5 is_collinear & not
b3,
b5,
b2 is_collinear & not
b3,
b4,
b5 is_collinear & not
b3,
b5,
b4 is_collinear & not
b4,
b2,
b3 is_collinear & not
b4,
b3,
b2 is_collinear & not
b4,
b2,
b5 is_collinear & not
b4,
b5,
b2 is_collinear & not
b4,
b3,
b5 is_collinear & not
b4,
b5,
b3 is_collinear & not
b5,
b2,
b3 is_collinear & not
b5,
b3,
b2 is_collinear & not
b5,
b2,
b4 is_collinear & not
b5,
b4,
b2 is_collinear & not
b5,
b3,
b4 is_collinear & not
b5,
b4,
b3 is_collinear )
theorem Th57: :: SEMI_AF1:57
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 holds
( not
parallelogram b2,
b3,
b4,
b5 or not
b2,
b3,
b6 is_collinear or not
b4,
b5,
b6 is_collinear )
theorem Th58: :: SEMI_AF1:58
theorem Th59: :: SEMI_AF1:59
theorem Th60: :: SEMI_AF1:60
theorem Th61: :: SEMI_AF1:61
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5 being
Element of
b1 st
parallelogram b2,
b3,
b4,
b5 holds
(
parallelogram b2,
b4,
b3,
b5 &
parallelogram b4,
b5,
b2,
b3 &
parallelogram b3,
b2,
b5,
b4 &
parallelogram b4,
b2,
b5,
b3 &
parallelogram b5,
b3,
b4,
b2 &
parallelogram b3,
b5,
b2,
b4 )
theorem Th62: :: SEMI_AF1:62
theorem Th63: :: SEMI_AF1:63
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st
parallelogram b2,
b3,
b4,
b5 &
parallelogram b2,
b3,
b4,
b6 holds
b5 = b6
theorem Th64: :: SEMI_AF1:64
theorem Th65: :: SEMI_AF1:65
theorem Th66: :: SEMI_AF1:66
theorem Th67: :: SEMI_AF1:67
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st
parallelogram b2,
b3,
b4,
b5 &
parallelogram b2,
b3,
b6,
b7 holds
b4,
b6 // b5,
b7
theorem Th68: :: SEMI_AF1:68
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st not
b2,
b3,
b4 is_collinear &
parallelogram b5,
b6,
b2,
b3 &
parallelogram b5,
b6,
b4,
b7 holds
parallelogram b2,
b3,
b4,
b7
theorem Th69: :: SEMI_AF1:69
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st
b2,
b3,
b4 is_collinear &
b3 <> b4 &
parallelogram b2,
b5,
b3,
b6 &
parallelogram b2,
b5,
b4,
b7 holds
parallelogram b3,
b6,
b4,
b7
theorem Th70: :: SEMI_AF1:70
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5,
b6,
b7,
b8,
b9 being
Element of
b1 st
parallelogram b2,
b3,
b4,
b5 &
parallelogram b2,
b3,
b6,
b7 &
parallelogram b4,
b5,
b8,
b9 holds
b6,
b8 // b7,
b9
Lemma44:
for b1 being Semi_Affine_Space
for b2, b3 being Element of b1 st b2 <> b3 holds
ex b4, b5 being Element of b1 st parallelogram b2,b3,b4,b5
theorem Th71: :: SEMI_AF1:71
definition
let c1 be
Semi_Affine_Space;
let c2,
c3,
c4,
c5 be
Element of
c1;
pred congr c2,
c3,
c4,
c5 means :
Def4:
:: SEMI_AF1:def 4
( (
a2 = a3 &
a4 = a5 ) or ex
b1,
b2 being
Element of
a1 st
(
parallelogram b1,
b2,
a2,
a3 &
parallelogram b1,
b2,
a4,
a5 ) );
end;
:: deftheorem Def4 defines congr SEMI_AF1:def 4 :
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5 being
Element of
b1 holds
(
congr b2,
b3,
b4,
b5 iff ( (
b2 = b3 &
b4 = b5 ) or ex
b6,
b7 being
Element of
b1 st
(
parallelogram b6,
b7,
b2,
b3 &
parallelogram b6,
b7,
b4,
b5 ) ) );
theorem Th72: :: SEMI_AF1:72
canceled;
theorem Th73: :: SEMI_AF1:73
theorem Th74: :: SEMI_AF1:74
theorem Th75: :: SEMI_AF1:75
theorem Th76: :: SEMI_AF1:76
theorem Th77: :: SEMI_AF1:77
theorem Th78: :: SEMI_AF1:78
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5 being
Element of
b1 st
congr b2,
b3,
b4,
b5 & not
b2,
b3,
b4 is_collinear holds
parallelogram b2,
b3,
b4,
b5
theorem Th79: :: SEMI_AF1:79
theorem Th80: :: SEMI_AF1:80
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st
congr b2,
b3,
b4,
b5 &
b2,
b3,
b4 is_collinear &
parallelogram b6,
b7,
b2,
b3 holds
parallelogram b6,
b7,
b4,
b5
theorem Th81: :: SEMI_AF1:81
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st
congr b2,
b3,
b4,
b5 &
congr b2,
b3,
b4,
b6 holds
b5 = b6
theorem Th82: :: SEMI_AF1:82
theorem Th83: :: SEMI_AF1:83
canceled;
theorem Th84: :: SEMI_AF1:84
theorem Th85: :: SEMI_AF1:85
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st
congr b2,
b3,
b4,
b5 &
congr b2,
b3,
b6,
b7 holds
congr b4,
b5,
b6,
b7
theorem Th86: :: SEMI_AF1:86
theorem Th87: :: SEMI_AF1:87
theorem Th88: :: SEMI_AF1:88
theorem Th89: :: SEMI_AF1:89
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5 being
Element of
b1 st
congr b2,
b3,
b4,
b5 holds
(
congr b4,
b5,
b2,
b3 &
congr b3,
b2,
b5,
b4 &
congr b2,
b4,
b3,
b5 &
congr b5,
b4,
b3,
b2 &
congr b3,
b5,
b2,
b4 &
congr b4,
b2,
b5,
b3 &
congr b5,
b3,
b4,
b2 )
theorem Th90: :: SEMI_AF1:90
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st
congr b2,
b3,
b4,
b5 &
congr b3,
b6,
b5,
b7 holds
congr b2,
b6,
b4,
b7
theorem Th91: :: SEMI_AF1:91
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st
congr b2,
b3,
b4,
b5 &
congr b6,
b3,
b4,
b7 holds
congr b2,
b6,
b7,
b5
theorem Th92: :: SEMI_AF1:92
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st
congr b2,
b3,
b3,
b4 &
congr b5,
b3,
b3,
b6 holds
congr b2,
b5,
b6,
b4 by Th91;
theorem Th93: :: SEMI_AF1:93
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st
congr b2,
b3,
b4,
b5 &
congr b6,
b3,
b4,
b7 holds
b2,
b6 // b5,
b7
theorem Th94: :: SEMI_AF1:94
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st
congr b2,
b3,
b3,
b4 &
congr b5,
b3,
b3,
b6 holds
b2,
b5 // b4,
b6 by Th93;
definition
let c1 be
Semi_Affine_Space;
let c2,
c3,
c4 be
Element of
c1;
func sum c2,
c3,
c4 -> Element of
a1 means :
Def5:
:: SEMI_AF1:def 5
congr a4,
a2,
a3,
a5;
correctness
existence
ex b1 being Element of c1 st congr c4,c2,c3,b1;
uniqueness
for b1, b2 being Element of c1 st congr c4,c2,c3,b1 & congr c4,c2,c3,b2 holds
b1 = b2;
by Th81, Th82;
end;
:: deftheorem Def5 defines sum SEMI_AF1:def 5 :
definition
let c1 be
Semi_Affine_Space;
let c2,
c3 be
Element of
c1;
func opposite c2,
c3 -> Element of
a1 means :
Def6:
:: SEMI_AF1:def 6
sum a2,
a4,
a3 = a3;
existence
ex b1 being Element of c1 st sum c2,b1,c3 = c3
uniqueness
for b1, b2 being Element of c1 st sum c2,b1,c3 = c3 & sum c2,b2,c3 = c3 holds
b1 = b2
end;
:: deftheorem Def6 defines opposite SEMI_AF1:def 6 :
definition
let c1 be
Semi_Affine_Space;
let c2,
c3,
c4 be
Element of
c1;
func diff c2,
c3,
c4 -> Element of
a1 equals :: SEMI_AF1:def 7
sum a2,
(opposite a3,a4),
a4;
correctness
coherence
sum c2,(opposite c3,c4),c4 is Element of c1;
;
end;
:: deftheorem Def7 defines diff SEMI_AF1:def 7 :
theorem Th95: :: SEMI_AF1:95
canceled;
theorem Th96: :: SEMI_AF1:96
canceled;
theorem Th97: :: SEMI_AF1:97
canceled;
theorem Th98: :: SEMI_AF1:98
canceled;
theorem Th99: :: SEMI_AF1:99
theorem Th100: :: SEMI_AF1:100
theorem Th101: :: SEMI_AF1:101
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5 being
Element of
b1 holds
sum (sum b2,b3,b4),
b5,
b4 = sum b2,
(sum b3,b5,b4),
b4
theorem Th102: :: SEMI_AF1:102
theorem Th103: :: SEMI_AF1:103
theorem Th104: :: SEMI_AF1:104
theorem Th105: :: SEMI_AF1:105
canceled;
theorem Th106: :: SEMI_AF1:106
theorem Th107: :: SEMI_AF1:107
theorem Th108: :: SEMI_AF1:108
theorem Th109: :: SEMI_AF1:109
theorem Th110: :: SEMI_AF1:110
theorem Th111: :: SEMI_AF1:111
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st
b2,
b3 // b4,
b5 holds
b2,
b3 // sum b2,
b4,
b6,
sum b3,
b5,
b6
theorem Th112: :: SEMI_AF1:112
canceled;
theorem Th113: :: SEMI_AF1:113
theorem Th114: :: SEMI_AF1:114
theorem Th115: :: SEMI_AF1:115
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 holds
(
b2,
diff b3,
b4,
b2,
diff b5,
b6,
b2 is_collinear iff
b4,
b3 // b6,
b5 )
definition
let c1 be
Semi_Affine_Space;
let c2,
c3,
c4,
c5,
c6 be
Element of
c1;
pred trap c2,
c3,
c4,
c5,
c6 means :
Def8:
:: SEMI_AF1:def 8
( not
a6,
a2,
a4 is_collinear &
a6,
a2,
a3 is_collinear &
a6,
a4,
a5 is_collinear &
a2,
a4 // a3,
a5 );
end;
:: deftheorem Def8 defines trap SEMI_AF1:def 8 :
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 holds
(
trap b2,
b3,
b4,
b5,
b6 iff ( not
b6,
b2,
b4 is_collinear &
b6,
b2,
b3 is_collinear &
b6,
b4,
b5 is_collinear &
b2,
b4 // b3,
b5 ) );
:: deftheorem Def9 defines qtrap SEMI_AF1:def 9 :
theorem Th116: :: SEMI_AF1:116
canceled;
theorem Th117: :: SEMI_AF1:117
canceled;
theorem Th118: :: SEMI_AF1:118
theorem Th119: :: SEMI_AF1:119
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st
trap b2,
b3,
b4,
b5,
b6 &
trap b2,
b3,
b4,
b7,
b6 holds
b5 = b7
theorem Th120: :: SEMI_AF1:120
theorem Th121: :: SEMI_AF1:121
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st
trap b2,
b3,
b4,
b5,
b6 holds
trap b4,
b5,
b2,
b3,
b6
theorem Th122: :: SEMI_AF1:122
theorem Th123: :: SEMI_AF1:123
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st
b2 <> b3 &
trap b4,
b3,
b5,
b6,
b2 holds
not
b2,
b3,
b6 is_collinear
theorem Th124: :: SEMI_AF1:124
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st
b2 <> b3 &
trap b4,
b3,
b5,
b6,
b2 holds
trap b3,
b4,
b6,
b5,
b2
theorem Th125: :: SEMI_AF1:125
theorem Th126: :: SEMI_AF1:126
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5,
b6,
b7,
b8 being
Element of
b1 st
trap b2,
b3,
b4,
b5,
b6 &
trap b2,
b3,
b7,
b8,
b6 holds
b4,
b7 // b5,
b8
theorem Th127: :: SEMI_AF1:127
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5,
b6,
b7,
b8 being
Element of
b1 st
trap b2,
b3,
b4,
b5,
b6 &
trap b2,
b3,
b7,
b8,
b6 & not
b6,
b4,
b7 is_collinear holds
trap b4,
b5,
b7,
b8,
b6
theorem Th128: :: SEMI_AF1:128
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5,
b6,
b7,
b8,
b9,
b10 being
Element of
b1 st
trap b2,
b3,
b4,
b5,
b6 &
trap b2,
b3,
b7,
b8,
b6 &
trap b4,
b5,
b9,
b10,
b6 holds
b7,
b9 // b8,
b10
theorem Th129: :: SEMI_AF1:129
theorem Th130: :: SEMI_AF1:130
theorem Th131: :: SEMI_AF1:131
theorem Th132: :: SEMI_AF1:132
theorem Th133: :: SEMI_AF1:133
for
b1 being
Semi_Affine_Space for
b2,
b3,
b4,
b5 being
Element of
b1 st not
b2,
b3,
b4 is_collinear &
b2,
b3,
b5 is_collinear &
qtrap b2,
b3 holds
ex
b6 being
Element of
b1 st
trap b3,
b5,
b4,
b6,
b2