:: TAYLOR_2 semantic presentation

theorem Th1: :: TAYLOR_2:1
for b1 being Real
for b2 being Nat holds abs (b1 |^ b2) = (abs b1) |^ b2
proof end;

definition
let c1 be PartFunc of REAL , REAL ;
let c2 be Subset of REAL ;
let c3 be real number ;
func Maclaurin c1,c2,c3 -> Real_Sequence equals :: TAYLOR_2:def 1
Taylor a1,a2,0,a3;
coherence
Taylor c1,c2,0,c3 is Real_Sequence
;
end;

:: deftheorem Def1 defines Maclaurin TAYLOR_2:def 1 :
for b1 being PartFunc of REAL , REAL
for b2 being Subset of REAL
for b3 being real number holds Maclaurin b1,b2,b3 = Taylor b1,b2,0,b3;

theorem Th2: :: TAYLOR_2:2
for b1 being Nat
for b2 being PartFunc of REAL , REAL
for b3 being Real st 0 < b3 & b2 is_differentiable_on b1 + 1,].(- b3),b3.[ holds
for b4 being Real st b4 in ].(- b3),b3.[ holds
ex b5 being Real st
( 0 < b5 & b5 < 1 & b2 . b4 = ((Partial_Sums (Maclaurin b2,].(- b3),b3.[,b4)) . b1) + (((((diff b2,].(- b3),b3.[) . (b1 + 1)) . (b5 * b4)) * (b4 |^ (b1 + 1))) / ((b1 + 1) ! )) )
proof end;

theorem Th3: :: TAYLOR_2:3
for b1 being Nat
for b2 being PartFunc of REAL , REAL
for b3, b4 being Real st 0 < b4 & b2 is_differentiable_on b1 + 1,].(b3 - b4),(b3 + b4).[ holds
for b5 being Real st b5 in ].(b3 - b4),(b3 + b4).[ holds
ex b6 being Real st
( 0 < b6 & b6 < 1 & abs ((b2 . b5) - ((Partial_Sums (Taylor b2,].(b3 - b4),(b3 + b4).[,b3,b5)) . b1)) = abs (((((diff b2,].(b3 - b4),(b3 + b4).[) . (b1 + 1)) . (b3 + (b6 * (b5 - b3)))) * ((b5 - b3) |^ (b1 + 1))) / ((b1 + 1) ! )) )
proof end;

theorem Th4: :: TAYLOR_2:4
for b1 being Nat
for b2 being PartFunc of REAL , REAL
for b3 being Real st 0 < b3 & b2 is_differentiable_on b1 + 1,].(- b3),b3.[ holds
for b4 being Real st b4 in ].(- b3),b3.[ holds
ex b5 being Real st
( 0 < b5 & b5 < 1 & abs ((b2 . b4) - ((Partial_Sums (Maclaurin b2,].(- b3),b3.[,b4)) . b1)) = abs (((((diff b2,].(- b3),b3.[) . (b1 + 1)) . (b5 * b4)) * (b4 |^ (b1 + 1))) / ((b1 + 1) ! )) )
proof end;

theorem Th5: :: TAYLOR_2:5
for b1 being Real holds
( exp `| ].(- b1),b1.[ = exp | ].(- b1),b1.[ & dom (exp | ].(- b1),b1.[) = ].(- b1),b1.[ )
proof end;

theorem Th6: :: TAYLOR_2:6
for b1 being Nat
for b2 being Real holds (diff exp ,].(- b2),b2.[) . b1 = exp | ].(- b2),b2.[
proof end;

theorem Th7: :: TAYLOR_2:7
for b1 being Nat
for b2, b3 being Real st b3 in ].(- b2),b2.[ holds
((diff exp ,].(- b2),b2.[) . b1) . b3 = exp . b3
proof end;

theorem Th8: :: TAYLOR_2:8
for b1 being Nat
for b2, b3 being Real st 0 < b2 holds
(Maclaurin exp ,].(- b2),b2.[,b3) . b1 = (b3 |^ b1) / (b1 ! )
proof end;

theorem Th9: :: TAYLOR_2:9
for b1 being Nat
for b2, b3, b4 being Real st b3 in ].(- b2),b2.[ & 0 < b4 & b4 < 1 holds
abs (((((diff exp ,].(- b2),b2.[) . (b1 + 1)) . (b4 * b3)) * (b3 |^ (b1 + 1))) / ((b1 + 1) ! )) <= ((abs (exp . (b4 * b3))) * ((abs b3) |^ (b1 + 1))) / ((b1 + 1) ! )
proof end;

theorem Th10: :: TAYLOR_2:10
for b1 being Real
for b2 being Nat holds exp is_differentiable_on b2,].(- b1),b1.[
proof end;

theorem Th11: :: TAYLOR_2:11
for b1 being Real st 0 < b1 holds
ex b2, b3 being Real st
( 0 <= b2 & 0 <= b3 & ( for b4 being Nat
for b5, b6 being Real st b5 in ].(- b1),b1.[ & 0 < b6 & b6 < 1 holds
abs (((((diff exp ,].(- b1),b1.[) . b4) . (b6 * b5)) * (b5 |^ b4)) / (b4 ! )) <= (b2 * (b3 |^ b4)) / (b4 ! ) ) )
proof end;

theorem Th12: :: TAYLOR_2:12
for b1, b2 being Real st b1 >= 0 & b2 >= 0 holds
for b3 being Real st b3 > 0 holds
ex b4 being Nat st
for b5 being Nat st b4 <= b5 holds
(b1 * (b2 |^ b5)) / (b5 ! ) < b3
proof end;

theorem Th13: :: TAYLOR_2:13
for b1, b2 being Real st 0 < b1 & 0 < b2 holds
ex b3 being Nat st
for b4 being Nat st b3 <= b4 holds
for b5, b6 being Real st b5 in ].(- b1),b1.[ & 0 < b6 & b6 < 1 holds
abs (((((diff exp ,].(- b1),b1.[) . b4) . (b6 * b5)) * (b5 |^ b4)) / (b4 ! )) < b2
proof end;

theorem Th14: :: TAYLOR_2:14
for b1, b2 being Real st 0 < b1 & 0 < b2 holds
ex b3 being Nat st
for b4 being Nat st b3 <= b4 holds
for b5 being real number st b5 in ].(- b1),b1.[ holds
abs ((exp . b5) - ((Partial_Sums (Maclaurin exp ,].(- b1),b1.[,b5)) . b4)) < b2
proof end;

theorem Th15: :: TAYLOR_2:15
for b1 being Real holds b1 ExpSeq is absolutely_summable
proof end;

theorem Th16: :: TAYLOR_2:16
for b1, b2 being Real st 0 < b1 holds
( Maclaurin exp ,].(- b1),b1.[,b2 = b2 ExpSeq & Maclaurin exp ,].(- b1),b1.[,b2 is absolutely_summable & exp . b2 = Sum (Maclaurin exp ,].(- b1),b1.[,b2) )
proof end;

theorem Th17: :: TAYLOR_2:17
for b1 being Real holds
( sin `| ].(- b1),b1.[ = cos | ].(- b1),b1.[ & cos `| ].(- b1),b1.[ = (- sin ) | ].(- b1),b1.[ & dom (sin | ].(- b1),b1.[) = ].(- b1),b1.[ & dom (cos | ].(- b1),b1.[) = ].(- b1),b1.[ )
proof end;

theorem Th18: :: TAYLOR_2:18
for b1 being PartFunc of REAL , REAL
for b2 being Subset of REAL st b1 is_differentiable_on b2 holds
(- b1) `| b2 = - (b1 `| b2)
proof end;

theorem Th19: :: TAYLOR_2:19
for b1 being Real
for b2 being Nat holds
( (diff sin ,].(- b1),b1.[) . (2 * b2) = ((- 1) |^ b2) (#) (sin | ].(- b1),b1.[) & (diff sin ,].(- b1),b1.[) . ((2 * b2) + 1) = ((- 1) |^ b2) (#) (cos | ].(- b1),b1.[) & (diff cos ,].(- b1),b1.[) . (2 * b2) = ((- 1) |^ b2) (#) (cos | ].(- b1),b1.[) & (diff cos ,].(- b1),b1.[) . ((2 * b2) + 1) = ((- 1) |^ (b2 + 1)) (#) (sin | ].(- b1),b1.[) )
proof end;

theorem Th20: :: TAYLOR_2:20
for b1 being Nat
for b2, b3 being Real st b2 > 0 holds
( (Maclaurin sin ,].(- b2),b2.[,b3) . (2 * b1) = 0 & (Maclaurin sin ,].(- b2),b2.[,b3) . ((2 * b1) + 1) = (((- 1) |^ b1) * (b3 |^ ((2 * b1) + 1))) / (((2 * b1) + 1) ! ) & (Maclaurin cos ,].(- b2),b2.[,b3) . (2 * b1) = (((- 1) |^ b1) * (b3 |^ (2 * b1))) / ((2 * b1) ! ) & (Maclaurin cos ,].(- b2),b2.[,b3) . ((2 * b1) + 1) = 0 )
proof end;

theorem Th21: :: TAYLOR_2:21
for b1 being Real
for b2 being Nat holds
( sin is_differentiable_on b2,].(- b1),b1.[ & cos is_differentiable_on b2,].(- b1),b1.[ )
proof end;

theorem Th22: :: TAYLOR_2:22
for b1 being Real st b1 > 0 holds
ex b2, b3 being Real st
( b2 >= 0 & b3 >= 0 & ( for b4 being Nat
for b5, b6 being Real st b5 in ].(- b1),b1.[ & 0 < b6 & b6 < 1 holds
( abs (((((diff sin ,].(- b1),b1.[) . b4) . (b6 * b5)) * (b5 |^ b4)) / (b4 ! )) <= (b2 * (b3 |^ b4)) / (b4 ! ) & abs (((((diff cos ,].(- b1),b1.[) . b4) . (b6 * b5)) * (b5 |^ b4)) / (b4 ! )) <= (b2 * (b3 |^ b4)) / (b4 ! ) ) ) )
proof end;

theorem Th23: :: TAYLOR_2:23
for b1, b2 being Real st 0 < b1 & 0 < b2 holds
ex b3 being Nat st
for b4 being Nat st b3 <= b4 holds
for b5, b6 being Real st b5 in ].(- b1),b1.[ & 0 < b6 & b6 < 1 holds
( abs (((((diff sin ,].(- b1),b1.[) . b4) . (b6 * b5)) * (b5 |^ b4)) / (b4 ! )) < b2 & abs (((((diff cos ,].(- b1),b1.[) . b4) . (b6 * b5)) * (b5 |^ b4)) / (b4 ! )) < b2 )
proof end;

theorem Th24: :: TAYLOR_2:24
for b1, b2 being Real st 0 < b1 & 0 < b2 holds
ex b3 being Nat st
for b4 being Nat st b3 <= b4 holds
for b5 being real number st b5 in ].(- b1),b1.[ holds
( abs ((sin . b5) - ((Partial_Sums (Maclaurin sin ,].(- b1),b1.[,b5)) . b4)) < b2 & abs ((cos . b5) - ((Partial_Sums (Maclaurin cos ,].(- b1),b1.[,b5)) . b4)) < b2 )
proof end;

theorem Th25: :: TAYLOR_2:25
for b1, b2 being Real
for b3 being Nat st 0 < b1 holds
( (Partial_Sums (Maclaurin sin ,].(- b1),b1.[,b2)) . ((2 * b3) + 1) = (Partial_Sums (b2 P_sin )) . b3 & (Partial_Sums (Maclaurin cos ,].(- b1),b1.[,b2)) . ((2 * b3) + 1) = (Partial_Sums (b2 P_cos )) . b3 )
proof end;

theorem Th26: :: TAYLOR_2:26
for b1, b2 being Real
for b3 being Nat st 0 < b1 & b3 > 0 holds
( (Partial_Sums (Maclaurin sin ,].(- b1),b1.[,b2)) . (2 * b3) = (Partial_Sums (b2 P_sin )) . (b3 - 1) & (Partial_Sums (Maclaurin cos ,].(- b1),b1.[,b2)) . (2 * b3) = (Partial_Sums (b2 P_cos )) . b3 )
proof end;

theorem Th27: :: TAYLOR_2:27
for b1, b2 being Real
for b3 being Nat st 0 < b1 holds
(Partial_Sums (Maclaurin cos ,].(- b1),b1.[,b2)) . (2 * b3) = (Partial_Sums (b2 P_cos )) . b3
proof end;

theorem Th28: :: TAYLOR_2:28
for b1, b2 being Real st b1 > 0 holds
( Partial_Sums (Maclaurin sin ,].(- b1),b1.[,b2) is convergent & sin . b2 = Sum (Maclaurin sin ,].(- b1),b1.[,b2) & Partial_Sums (Maclaurin cos ,].(- b1),b1.[,b2) is convergent & cos . b2 = Sum (Maclaurin cos ,].(- b1),b1.[,b2) )
proof end;