:: TAYLOR_2 semantic presentation
theorem Th1: :: TAYLOR_2:1
:: deftheorem Def1 defines Maclaurin TAYLOR_2:def 1 :
theorem Th2: :: TAYLOR_2:2
theorem Th3: :: TAYLOR_2:3
for
b1 being
Nat for
b2 being
PartFunc of
REAL ,
REAL for
b3,
b4 being
Real st 0
< b4 &
b2 is_differentiable_on b1 + 1,
].(b3 - b4),(b3 + b4).[ holds
for
b5 being
Real st
b5 in ].(b3 - b4),(b3 + b4).[ holds
ex
b6 being
Real st
( 0
< b6 &
b6 < 1 &
abs ((b2 . b5) - ((Partial_Sums (Taylor b2,].(b3 - b4),(b3 + b4).[,b3,b5)) . b1)) = abs (((((diff b2,].(b3 - b4),(b3 + b4).[) . (b1 + 1)) . (b3 + (b6 * (b5 - b3)))) * ((b5 - b3) |^ (b1 + 1))) / ((b1 + 1) ! )) )
theorem Th4: :: TAYLOR_2:4
theorem Th5: :: TAYLOR_2:5
theorem Th6: :: TAYLOR_2:6
theorem Th7: :: TAYLOR_2:7
theorem Th8: :: TAYLOR_2:8
theorem Th9: :: TAYLOR_2:9
theorem Th10: :: TAYLOR_2:10
theorem Th11: :: TAYLOR_2:11
theorem Th12: :: TAYLOR_2:12
for
b1,
b2 being
Real st
b1 >= 0 &
b2 >= 0 holds
for
b3 being
Real st
b3 > 0 holds
ex
b4 being
Nat st
for
b5 being
Nat st
b4 <= b5 holds
(b1 * (b2 |^ b5)) / (b5 ! ) < b3
theorem Th13: :: TAYLOR_2:13
theorem Th14: :: TAYLOR_2:14
theorem Th15: :: TAYLOR_2:15
theorem Th16: :: TAYLOR_2:16
for
b1,
b2 being
Real st 0
< b1 holds
(
Maclaurin exp ,
].(- b1),b1.[,
b2 = b2 ExpSeq &
Maclaurin exp ,
].(- b1),b1.[,
b2 is
absolutely_summable &
exp . b2 = Sum (Maclaurin exp ,].(- b1),b1.[,b2) )
theorem Th17: :: TAYLOR_2:17
theorem Th18: :: TAYLOR_2:18
theorem Th19: :: TAYLOR_2:19
for
b1 being
Real for
b2 being
Nat holds
(
(diff sin ,].(- b1),b1.[) . (2 * b2) = ((- 1) |^ b2) (#) (sin | ].(- b1),b1.[) &
(diff sin ,].(- b1),b1.[) . ((2 * b2) + 1) = ((- 1) |^ b2) (#) (cos | ].(- b1),b1.[) &
(diff cos ,].(- b1),b1.[) . (2 * b2) = ((- 1) |^ b2) (#) (cos | ].(- b1),b1.[) &
(diff cos ,].(- b1),b1.[) . ((2 * b2) + 1) = ((- 1) |^ (b2 + 1)) (#) (sin | ].(- b1),b1.[) )
theorem Th20: :: TAYLOR_2:20
for
b1 being
Nat for
b2,
b3 being
Real st
b2 > 0 holds
(
(Maclaurin sin ,].(- b2),b2.[,b3) . (2 * b1) = 0 &
(Maclaurin sin ,].(- b2),b2.[,b3) . ((2 * b1) + 1) = (((- 1) |^ b1) * (b3 |^ ((2 * b1) + 1))) / (((2 * b1) + 1) ! ) &
(Maclaurin cos ,].(- b2),b2.[,b3) . (2 * b1) = (((- 1) |^ b1) * (b3 |^ (2 * b1))) / ((2 * b1) ! ) &
(Maclaurin cos ,].(- b2),b2.[,b3) . ((2 * b1) + 1) = 0 )
theorem Th21: :: TAYLOR_2:21
theorem Th22: :: TAYLOR_2:22
theorem Th23: :: TAYLOR_2:23
theorem Th24: :: TAYLOR_2:24
theorem Th25: :: TAYLOR_2:25
theorem Th26: :: TAYLOR_2:26
theorem Th27: :: TAYLOR_2:27
theorem Th28: :: TAYLOR_2:28
for
b1,
b2 being
Real st
b1 > 0 holds
(
Partial_Sums (Maclaurin sin ,].(- b1),b1.[,b2) is
convergent &
sin . b2 = Sum (Maclaurin sin ,].(- b1),b1.[,b2) &
Partial_Sums (Maclaurin cos ,].(- b1),b1.[,b2) is
convergent &
cos . b2 = Sum (Maclaurin cos ,].(- b1),b1.[,b2) )