:: TAYLOR_1 semantic presentation
:: deftheorem Def1 defines #Z TAYLOR_1:def 1 :
theorem Th1: :: TAYLOR_1:1
theorem Th2: :: TAYLOR_1:2
theorem Th3: :: TAYLOR_1:3
Lemma4:
for b1 being natural number
for b2 being real number holds (exp b2) #R b1 = exp (b1 * b2)
theorem Th4: :: TAYLOR_1:4
Lemma6:
for b1 being Integer
for b2 being real number holds (exp b2) #R b1 = exp (b1 * b2)
theorem Th5: :: TAYLOR_1:5
theorem Th6: :: TAYLOR_1:6
Lemma9:
for b1 being real number
for b2 being Rational holds (exp b1) #R b2 = exp (b2 * b1)
theorem Th7: :: TAYLOR_1:7
theorem Th8: :: TAYLOR_1:8
theorem Th9: :: TAYLOR_1:9
theorem Th10: :: TAYLOR_1:10
theorem Th11: :: TAYLOR_1:11
then Lemma13:
( number_e > 1 & number_e > 0 )
by XREAL_1:2;
theorem Th12: :: TAYLOR_1:12
theorem Th13: :: TAYLOR_1:13
theorem Th14: :: TAYLOR_1:14
theorem Th15: :: TAYLOR_1:15
theorem Th16: :: TAYLOR_1:16
theorem Th17: :: TAYLOR_1:17
:: deftheorem Def2 defines log_ TAYLOR_1:def 2 :
theorem Th18: :: TAYLOR_1:18
theorem Th19: :: TAYLOR_1:19
theorem Th20: :: TAYLOR_1:20
:: deftheorem Def3 defines #R TAYLOR_1:def 3 :
theorem Th21: :: TAYLOR_1:21
theorem Th22: :: TAYLOR_1:22
:: deftheorem Def4 defines diff TAYLOR_1:def 4 :
:: deftheorem Def5 defines is_differentiable_on TAYLOR_1:def 5 :
theorem Th23: :: TAYLOR_1:23
definition
let c1 be
PartFunc of
REAL ,
REAL ;
let c2 be
Subset of
REAL ;
let c3,
c4 be
real number ;
func Taylor c1,
c2,
c3,
c4 -> Real_Sequence means :
Def6:
:: TAYLOR_1:def 6
for
b1 being
natural number holds
a5 . b1 = ((((diff a1,a2) . b1) . a3) * ((a4 - a3) |^ b1)) / (b1 ! );
existence
ex b1 being Real_Sequence st
for b2 being natural number holds b1 . b2 = ((((diff c1,c2) . b2) . c3) * ((c4 - c3) |^ b2)) / (b2 ! )
uniqueness
for b1, b2 being Real_Sequence st ( for b3 being natural number holds b1 . b3 = ((((diff c1,c2) . b3) . c3) * ((c4 - c3) |^ b3)) / (b3 ! ) ) & ( for b3 being natural number holds b2 . b3 = ((((diff c1,c2) . b3) . c3) * ((c4 - c3) |^ b3)) / (b3 ! ) ) holds
b1 = b2
end;
:: deftheorem Def6 defines Taylor TAYLOR_1:def 6 :
Lemma28:
for b1 being Real ex b2 being PartFunc of REAL , REAL st
( dom b2 = REAL & ( for b3 being Real holds
( b2 . b3 = b1 - b3 & ( for b4 being Real holds
( b2 is_differentiable_in b4 & diff b2,b4 = - 1 ) ) ) ) )
Lemma29:
for b1 being Nat
for b2, b3 being Real ex b4 being PartFunc of REAL , REAL st
( dom b4 = REAL & ( for b5 being Real holds
( b4 . b5 = (b2 * ((b3 - b5) |^ (b1 + 1))) / ((b1 + 1) ! ) & ( for b6 being Real holds
( b4 is_differentiable_in b6 & diff b4,b6 = - ((b2 * ((b3 - b6) |^ b1)) / (b1 ! )) ) ) ) ) )
Lemma30:
for b1 being Nat
for b2 being PartFunc of REAL , REAL
for b3 being Subset of REAL
for b4 being Real ex b5 being PartFunc of REAL , REAL st
( dom b5 = b3 & ( for b6 being Real st b6 in b3 holds
b5 . b6 = (b2 . b4) - ((Partial_Sums (Taylor b2,b3,b6,b4)) . b1) ) )
theorem Th24: :: TAYLOR_1:24
Lemma32:
for b1 being PartFunc of REAL , REAL
for b2 being Subset of REAL
for b3 being Nat st b1 is_differentiable_on b3,b2 holds
for b4, b5 being Real st b4 < b5 & [.b4,b5.] c= b2 & (diff b1,b2) . b3 is_continuous_on [.b4,b5.] & b1 is_differentiable_on b3 + 1,].b4,b5.[ holds
for b6 being PartFunc of REAL , REAL st dom b6 = b2 & ( for b7 being Real st b7 in b2 holds
b6 . b7 = (b1 . b5) - ((Partial_Sums (Taylor b1,b2,b7,b5)) . b3) ) holds
( b6 . b5 = 0 & b6 is_continuous_on [.b4,b5.] & b6 is_differentiable_on ].b4,b5.[ & ( for b7 being Real st b7 in ].b4,b5.[ holds
diff b6,b7 = - (((((diff b1,].b4,b5.[) . (b3 + 1)) . b7) * ((b5 - b7) |^ b3)) / (b3 ! )) ) )
Lemma33:
for b1 being Nat
for b2 being PartFunc of REAL , REAL
for b3 being Subset of REAL st b2 is_differentiable_on b1,b3 holds
for b4, b5 being Real st b4 < b5 & [.b4,b5.] c= b3 & (diff b2,b3) . b1 is_continuous_on [.b4,b5.] & b2 is_differentiable_on b1 + 1,].b4,b5.[ holds
ex b6 being PartFunc of REAL , REAL st
( dom b6 = b3 & ( for b7 being Real st b7 in b3 holds
b6 . b7 = (b2 . b5) - ((Partial_Sums (Taylor b2,b3,b7,b5)) . b1) ) & b6 . b5 = 0 & b6 is_continuous_on [.b4,b5.] & b6 is_differentiable_on ].b4,b5.[ & ( for b7 being Real st b7 in ].b4,b5.[ holds
diff b6,b7 = - (((((diff b2,].b4,b5.[) . (b1 + 1)) . b7) * ((b5 - b7) |^ b1)) / (b1 ! )) ) )
theorem Th25: :: TAYLOR_1:25
for
b1 being
Nat for
b2 being
PartFunc of
REAL ,
REAL for
b3 being
Subset of
REAL st
b2 is_differentiable_on b1,
b3 holds
for
b4,
b5 being
Real st
b4 < b5 &
[.b4,b5.] c= b3 &
(diff b2,b3) . b1 is_continuous_on [.b4,b5.] &
b2 is_differentiable_on b1 + 1,
].b4,b5.[ holds
for
b6 being
Real for
b7 being
PartFunc of
REAL ,
REAL st
dom b7 = REAL & ( for
b8 being
Real holds
b7 . b8 = ((b2 . b5) - ((Partial_Sums (Taylor b2,b3,b8,b5)) . b1)) - ((b6 * ((b5 - b8) |^ (b1 + 1))) / ((b1 + 1) ! )) ) &
((b2 . b5) - ((Partial_Sums (Taylor b2,b3,b4,b5)) . b1)) - ((b6 * ((b5 - b4) |^ (b1 + 1))) / ((b1 + 1) ! )) = 0 holds
(
b7 is_differentiable_on ].b4,b5.[ &
b7 . b4 = 0 &
b7 . b5 = 0 &
b7 is_continuous_on [.b4,b5.] & ( for
b8 being
Real st
b8 in ].b4,b5.[ holds
diff b7,
b8 = (- (((((diff b2,].b4,b5.[) . (b1 + 1)) . b8) * ((b5 - b8) |^ b1)) / (b1 ! ))) + ((b6 * ((b5 - b8) |^ b1)) / (b1 ! )) ) )
theorem Th26: :: TAYLOR_1:26
theorem Th27: :: TAYLOR_1:27
for
b1 being
Nat for
b2 being
PartFunc of
REAL ,
REAL for
b3 being
Subset of
REAL st
b2 is_differentiable_on b1,
b3 holds
for
b4,
b5 being
Real st
b4 < b5 &
[.b4,b5.] c= b3 &
(diff b2,b3) . b1 is_continuous_on [.b4,b5.] &
b2 is_differentiable_on b1 + 1,
].b4,b5.[ holds
ex
b6 being
Real st
(
b6 in ].b4,b5.[ &
b2 . b5 = ((Partial_Sums (Taylor b2,b3,b4,b5)) . b1) + (((((diff b2,].b4,b5.[) . (b1 + 1)) . b6) * ((b5 - b4) |^ (b1 + 1))) / ((b1 + 1) ! )) )
Lemma37:
for b1 being PartFunc of REAL , REAL
for b2 being Subset of REAL
for b3 being Nat st b1 is_differentiable_on b3,b2 holds
for b4, b5 being Real st b4 < b5 & [.b4,b5.] c= b2 & (diff b1,b2) . b3 is_continuous_on [.b4,b5.] & b1 is_differentiable_on b3 + 1,].b4,b5.[ holds
for b6 being PartFunc of REAL , REAL st dom b6 = b2 & ( for b7 being Real st b7 in b2 holds
b6 . b7 = (b1 . b4) - ((Partial_Sums (Taylor b1,b2,b7,b4)) . b3) ) holds
( b6 . b4 = 0 & b6 is_continuous_on [.b4,b5.] & b6 is_differentiable_on ].b4,b5.[ & ( for b7 being Real st b7 in ].b4,b5.[ holds
diff b6,b7 = - (((((diff b1,].b4,b5.[) . (b3 + 1)) . b7) * ((b4 - b7) |^ b3)) / (b3 ! )) ) )
Lemma38:
for b1 being Nat
for b2 being PartFunc of REAL , REAL
for b3 being Subset of REAL st b2 is_differentiable_on b1,b3 holds
for b4, b5 being Real st b4 < b5 & [.b4,b5.] c= b3 & (diff b2,b3) . b1 is_continuous_on [.b4,b5.] & b2 is_differentiable_on b1 + 1,].b4,b5.[ holds
ex b6 being PartFunc of REAL , REAL st
( dom b6 = b3 & ( for b7 being Real st b7 in b3 holds
b6 . b7 = (b2 . b4) - ((Partial_Sums (Taylor b2,b3,b7,b4)) . b1) ) & b6 . b4 = 0 & b6 is_continuous_on [.b4,b5.] & b6 is_differentiable_on ].b4,b5.[ & ( for b7 being Real st b7 in ].b4,b5.[ holds
diff b6,b7 = - (((((diff b2,].b4,b5.[) . (b1 + 1)) . b7) * ((b4 - b7) |^ b1)) / (b1 ! )) ) )
theorem Th28: :: TAYLOR_1:28
for
b1 being
Nat for
b2 being
PartFunc of
REAL ,
REAL for
b3 being
Subset of
REAL st
b2 is_differentiable_on b1,
b3 holds
for
b4,
b5 being
Real st
b4 < b5 &
[.b4,b5.] c= b3 &
(diff b2,b3) . b1 is_continuous_on [.b4,b5.] &
b2 is_differentiable_on b1 + 1,
].b4,b5.[ holds
for
b6 being
Real for
b7 being
PartFunc of
REAL ,
REAL st
dom b7 = REAL & ( for
b8 being
Real holds
b7 . b8 = ((b2 . b4) - ((Partial_Sums (Taylor b2,b3,b8,b4)) . b1)) - ((b6 * ((b4 - b8) |^ (b1 + 1))) / ((b1 + 1) ! )) ) &
((b2 . b4) - ((Partial_Sums (Taylor b2,b3,b5,b4)) . b1)) - ((b6 * ((b4 - b5) |^ (b1 + 1))) / ((b1 + 1) ! )) = 0 holds
(
b7 is_differentiable_on ].b4,b5.[ &
b7 . b5 = 0 &
b7 . b4 = 0 &
b7 is_continuous_on [.b4,b5.] & ( for
b8 being
Real st
b8 in ].b4,b5.[ holds
diff b7,
b8 = (- (((((diff b2,].b4,b5.[) . (b1 + 1)) . b8) * ((b4 - b8) |^ b1)) / (b1 ! ))) + ((b6 * ((b4 - b8) |^ b1)) / (b1 ! )) ) )
theorem Th29: :: TAYLOR_1:29
for
b1 being
Nat for
b2 being
PartFunc of
REAL ,
REAL for
b3 being
Subset of
REAL st
b2 is_differentiable_on b1,
b3 holds
for
b4,
b5 being
Real st
b4 < b5 &
[.b4,b5.] c= b3 &
(diff b2,b3) . b1 is_continuous_on [.b4,b5.] &
b2 is_differentiable_on b1 + 1,
].b4,b5.[ holds
ex
b6 being
Real st
(
b6 in ].b4,b5.[ &
b2 . b4 = ((Partial_Sums (Taylor b2,b3,b5,b4)) . b1) + (((((diff b2,].b4,b5.[) . (b1 + 1)) . b6) * ((b4 - b5) |^ (b1 + 1))) / ((b1 + 1) ! )) )
theorem Th30: :: TAYLOR_1:30
theorem Th31: :: TAYLOR_1:31
theorem Th32: :: TAYLOR_1:32
theorem Th33: :: TAYLOR_1:33
for
b1 being
Nat for
b2 being
PartFunc of
REAL ,
REAL for
b3,
b4 being
Real st 0
< b4 &
b2 is_differentiable_on b1 + 1,
].(b3 - b4),(b3 + b4).[ holds
for
b5 being
Real st
b5 in ].(b3 - b4),(b3 + b4).[ holds
ex
b6 being
Real st
( 0
< b6 &
b6 < 1 &
b2 . b5 = ((Partial_Sums (Taylor b2,].(b3 - b4),(b3 + b4).[,b3,b5)) . b1) + (((((diff b2,].(b3 - b4),(b3 + b4).[) . (b1 + 1)) . (b3 + (b6 * (b5 - b3)))) * ((b5 - b3) |^ (b1 + 1))) / ((b1 + 1) ! )) )