:: TREAL_1 semantic presentation
theorem Th1: :: TREAL_1:1
theorem Th2: :: TREAL_1:2
theorem Th3: :: TREAL_1:3
Lemma4:
for b1, b2 being real number
for b3 being set st b3 in [.b1,b2.] holds
b3 is Real
;
Lemma5:
for b1, b2, b3 being real number
for b4 being set st b4 in [.b1,b2.] & b1 <= b2 & b3 = b4 holds
( b1 <= b3 & b3 <= b2 )
Lemma6:
for b1, b2 being real number
for b3 being Point of (Closed-Interval-TSpace b1,b2) st b1 <= b2 holds
b3 is Real
theorem Th4: :: TREAL_1:4
theorem Th5: :: TREAL_1:5
theorem Th6: :: TREAL_1:6
theorem Th7: :: TREAL_1:7
:: deftheorem Def1 defines (#) TREAL_1:def 1 :
:: deftheorem Def2 defines (#) TREAL_1:def 2 :
theorem Th8: :: TREAL_1:8
theorem Th9: :: TREAL_1:9
definition
let c1,
c2 be
real number ;
assume E11:
c1 <= c2
;
let c3,
c4 be
Point of
(Closed-Interval-TSpace c1,c2);
func L[01] c3,
c4 -> Function of
(Closed-Interval-TSpace 0,1),
(Closed-Interval-TSpace a1,a2) means :
Def3:
:: TREAL_1:def 3
for
b1 being
Point of
(Closed-Interval-TSpace 0,1) for
b2,
b3,
b4 being
real number st
b1 = b2 &
b3 = a3 &
b4 = a4 holds
a5 . b1 = ((1 - b2) * b3) + (b2 * b4);
existence
ex b1 being Function of (Closed-Interval-TSpace 0,1),(Closed-Interval-TSpace c1,c2) st
for b2 being Point of (Closed-Interval-TSpace 0,1)
for b3, b4, b5 being real number st b2 = b3 & b4 = c3 & b5 = c4 holds
b1 . b2 = ((1 - b3) * b4) + (b3 * b5)
uniqueness
for b1, b2 being Function of (Closed-Interval-TSpace 0,1),(Closed-Interval-TSpace c1,c2) st ( for b3 being Point of (Closed-Interval-TSpace 0,1)
for b4, b5, b6 being real number st b3 = b4 & b5 = c3 & b6 = c4 holds
b1 . b3 = ((1 - b4) * b5) + (b4 * b6) ) & ( for b3 being Point of (Closed-Interval-TSpace 0,1)
for b4, b5, b6 being real number st b3 = b4 & b5 = c3 & b6 = c4 holds
b2 . b3 = ((1 - b4) * b5) + (b4 * b6) ) holds
b1 = b2
end;
:: deftheorem Def3 defines L[01] TREAL_1:def 3 :
for
b1,
b2 being
real number st
b1 <= b2 holds
for
b3,
b4 being
Point of
(Closed-Interval-TSpace b1,b2) for
b5 being
Function of
(Closed-Interval-TSpace 0,1),
(Closed-Interval-TSpace b1,b2) holds
(
b5 = L[01] b3,
b4 iff for
b6 being
Point of
(Closed-Interval-TSpace 0,1) for
b7,
b8,
b9 being
real number st
b6 = b7 &
b8 = b3 &
b9 = b4 holds
b5 . b6 = ((1 - b7) * b8) + (b7 * b9) );
theorem Th10: :: TREAL_1:10
theorem Th11: :: TREAL_1:11
theorem Th12: :: TREAL_1:12
theorem Th13: :: TREAL_1:13
definition
let c1,
c2 be
real number ;
assume E14:
c1 < c2
;
let c3,
c4 be
Point of
(Closed-Interval-TSpace 0,1);
func P[01] c1,
c2,
c3,
c4 -> Function of
(Closed-Interval-TSpace a1,a2),
(Closed-Interval-TSpace 0,1) means :
Def4:
:: TREAL_1:def 4
for
b1 being
Point of
(Closed-Interval-TSpace a1,a2) for
b2,
b3,
b4 being
real number st
b1 = b2 &
b3 = a3 &
b4 = a4 holds
a5 . b1 = (((a2 - b2) * b3) + ((b2 - a1) * b4)) / (a2 - a1);
existence
ex b1 being Function of (Closed-Interval-TSpace c1,c2),(Closed-Interval-TSpace 0,1) st
for b2 being Point of (Closed-Interval-TSpace c1,c2)
for b3, b4, b5 being real number st b2 = b3 & b4 = c3 & b5 = c4 holds
b1 . b2 = (((c2 - b3) * b4) + ((b3 - c1) * b5)) / (c2 - c1)
uniqueness
for b1, b2 being Function of (Closed-Interval-TSpace c1,c2),(Closed-Interval-TSpace 0,1) st ( for b3 being Point of (Closed-Interval-TSpace c1,c2)
for b4, b5, b6 being real number st b3 = b4 & b5 = c3 & b6 = c4 holds
b1 . b3 = (((c2 - b4) * b5) + ((b4 - c1) * b6)) / (c2 - c1) ) & ( for b3 being Point of (Closed-Interval-TSpace c1,c2)
for b4, b5, b6 being real number st b3 = b4 & b5 = c3 & b6 = c4 holds
b2 . b3 = (((c2 - b4) * b5) + ((b4 - c1) * b6)) / (c2 - c1) ) holds
b1 = b2
end;
:: deftheorem Def4 defines P[01] TREAL_1:def 4 :
for
b1,
b2 being
real number st
b1 < b2 holds
for
b3,
b4 being
Point of
(Closed-Interval-TSpace 0,1) for
b5 being
Function of
(Closed-Interval-TSpace b1,b2),
(Closed-Interval-TSpace 0,1) holds
(
b5 = P[01] b1,
b2,
b3,
b4 iff for
b6 being
Point of
(Closed-Interval-TSpace b1,b2) for
b7,
b8,
b9 being
real number st
b6 = b7 &
b8 = b3 &
b9 = b4 holds
b5 . b6 = (((b2 - b7) * b8) + ((b7 - b1) * b9)) / (b2 - b1) );
theorem Th14: :: TREAL_1:14
theorem Th15: :: TREAL_1:15
theorem Th16: :: TREAL_1:16
for
b1,
b2 being
real number st
b1 < b2 holds
for
b3,
b4 being
Point of
(Closed-Interval-TSpace 0,1) holds
(
(P[01] b1,b2,b3,b4) . ((#) b1,b2) = b3 &
(P[01] b1,b2,b3,b4) . (b1,b2 (#) ) = b4 )
theorem Th17: :: TREAL_1:17
theorem Th18: :: TREAL_1:18
for
b1,
b2 being
real number st
b1 < b2 holds
(
id (Closed-Interval-TSpace b1,b2) = (L[01] ((#) b1,b2),(b1,b2 (#) )) * (P[01] b1,b2,((#) 0,1),(0,1 (#) )) &
id (Closed-Interval-TSpace 0,1) = (P[01] b1,b2,((#) 0,1),(0,1 (#) )) * (L[01] ((#) b1,b2),(b1,b2 (#) )) )
theorem Th19: :: TREAL_1:19
for
b1,
b2 being
real number st
b1 < b2 holds
(
id (Closed-Interval-TSpace b1,b2) = (L[01] (b1,b2 (#) ),((#) b1,b2)) * (P[01] b1,b2,(0,1 (#) ),((#) 0,1)) &
id (Closed-Interval-TSpace 0,1) = (P[01] b1,b2,(0,1 (#) ),((#) 0,1)) * (L[01] (b1,b2 (#) ),((#) b1,b2)) )
theorem Th20: :: TREAL_1:20
for
b1,
b2 being
real number st
b1 < b2 holds
(
L[01] ((#) b1,b2),
(b1,b2 (#) ) is_homeomorphism &
(L[01] ((#) b1,b2),(b1,b2 (#) )) " = P[01] b1,
b2,
((#) 0,1),
(0,1 (#) ) &
P[01] b1,
b2,
((#) 0,1),
(0,1 (#) ) is_homeomorphism &
(P[01] b1,b2,((#) 0,1),(0,1 (#) )) " = L[01] ((#) b1,b2),
(b1,b2 (#) ) )
theorem Th21: :: TREAL_1:21
for
b1,
b2 being
real number st
b1 < b2 holds
(
L[01] (b1,b2 (#) ),
((#) b1,b2) is_homeomorphism &
(L[01] (b1,b2 (#) ),((#) b1,b2)) " = P[01] b1,
b2,
(0,1 (#) ),
((#) 0,1) &
P[01] b1,
b2,
(0,1 (#) ),
((#) 0,1) is_homeomorphism &
(P[01] b1,b2,(0,1 (#) ),((#) 0,1)) " = L[01] (b1,b2 (#) ),
((#) b1,b2) )
theorem Th22: :: TREAL_1:22
theorem Th23: :: TREAL_1:23
theorem Th24: :: TREAL_1:24
theorem Th25: :: TREAL_1:25
theorem Th26: :: TREAL_1:26
theorem Th27: :: TREAL_1:27