:: ZFREFLE1 semantic presentation
:: deftheorem Def1 defines |= ZFREFLE1:def 1 :
:: deftheorem Def2 defines <==> ZFREFLE1:def 2 :
:: deftheorem Def3 defines is_elementary_subsystem_of ZFREFLE1:def 3 :
defpred S1[ set ] means ( a1 = the_axiom_of_extensionality or a1 = the_axiom_of_pairs or a1 = the_axiom_of_unions or a1 = the_axiom_of_infinity or a1 = the_axiom_of_power_sets or ex b1 being ZF-formula st
( {(x. 0),(x. 1),(x. 2)} misses Free b1 & a1 = the_axiom_of_substitution_for b1 ) );
:: deftheorem Def4 defines ZF-axioms ZFREFLE1:def 4 :
theorem Th1: :: ZFREFLE1:1
theorem Th2: :: ZFREFLE1:2
theorem Th3: :: ZFREFLE1:3
theorem Th4: :: ZFREFLE1:4
theorem Th5: :: ZFREFLE1:5
theorem Th6: :: ZFREFLE1:6
theorem Th7: :: ZFREFLE1:7
theorem Th8: :: ZFREFLE1:8
theorem Th9: :: ZFREFLE1:9
theorem Th10: :: ZFREFLE1:10
theorem Th11: :: ZFREFLE1:11
canceled;
theorem Th12: :: ZFREFLE1:12
theorem Th13: :: ZFREFLE1:13
theorem Th14: :: ZFREFLE1:14
theorem Th15: :: ZFREFLE1:15
theorem Th16: :: ZFREFLE1:16
theorem Th17: :: ZFREFLE1:17
:: deftheorem Def5 defines is_cofinal_with ZFREFLE1:def 5 :
theorem Th18: :: ZFREFLE1:18
canceled;
theorem Th19: :: ZFREFLE1:19
theorem Th20: :: ZFREFLE1:20
theorem Th21: :: ZFREFLE1:21
theorem Th22: :: ZFREFLE1:22
theorem Th23: :: ZFREFLE1:23
theorem Th24: :: ZFREFLE1:24
theorem Th25: :: ZFREFLE1:25
theorem Th26: :: ZFREFLE1:26
theorem Th27: :: ZFREFLE1:27
theorem Th28: :: ZFREFLE1:28
theorem Th29: :: ZFREFLE1:29
theorem Th30: :: ZFREFLE1:30
theorem Th31: :: ZFREFLE1:31
theorem Th32: :: ZFREFLE1:32
theorem Th33: :: ZFREFLE1:33
theorem Th34: :: ZFREFLE1:34
theorem Th35: :: ZFREFLE1:35
theorem Th36: :: ZFREFLE1:36
theorem Th37: :: ZFREFLE1:37
theorem Th38: :: ZFREFLE1:38
theorem Th39: :: ZFREFLE1:39
theorem Th40: :: ZFREFLE1:40
theorem Th41: :: ZFREFLE1:41
theorem Th42: :: ZFREFLE1:42
theorem Th43: :: ZFREFLE1:43