begin
Lm1:
for n being Element of NAT
for D being non empty set
for f being FinSequence of D st len f <= n holds
f | n = f
Lm2:
for f being Function
for x being set st not x in rng f holds
f " {x} = {}
begin
definition
let D be non
empty set ;
let E be
real-membered set ;
let F1,
F2 be
Element of
PFuncs (
D,
E);
+redefine func F1 + F2 -> Element of
PFuncs (
D,
REAL);
coherence
F1 + F2 is Element of PFuncs (D,REAL)
-redefine func F1 - F2 -> Element of
PFuncs (
D,
REAL);
coherence
F1 - F2 is Element of PFuncs (D,REAL)
(#)redefine func F1 (#) F2 -> Element of
PFuncs (
D,
REAL);
coherence
F1 (#) F2 is Element of PFuncs (D,REAL)
/redefine func F1 / F2 -> Element of
PFuncs (
D,
REAL);
coherence
F1 / F2 is Element of PFuncs (D,REAL)
end;
definition
let D be non
empty set ;
existence
ex b1 being BinOp of (PFuncs (D,REAL)) st
for F1, F2 being Element of PFuncs (D,REAL) holds b1 . (F1,F2) = F1 + F2
uniqueness
for b1, b2 being BinOp of (PFuncs (D,REAL)) st ( for F1, F2 being Element of PFuncs (D,REAL) holds b1 . (F1,F2) = F1 + F2 ) & ( for F1, F2 being Element of PFuncs (D,REAL) holds b2 . (F1,F2) = F1 + F2 ) holds
b1 = b2
end;
definition
let D be non
empty set ;
let f be
FinSequence of
PFuncs (
D,
REAL);
let R be
FinSequence of
REAL ;
existence
ex b1 being FinSequence of PFuncs (D,REAL) st
( len b1 = min ((len R),(len f)) & ( for n being Element of NAT st n in dom b1 holds
for F being PartFunc of D,REAL
for r being Real st r = R . n & F = f . n holds
b1 . n = r (#) F ) )
uniqueness
for b1, b2 being FinSequence of PFuncs (D,REAL) st len b1 = min ((len R),(len f)) & ( for n being Element of NAT st n in dom b1 holds
for F being PartFunc of D,REAL
for r being Real st r = R . n & F = f . n holds
b1 . n = r (#) F ) & len b2 = min ((len R),(len f)) & ( for n being Element of NAT st n in dom b2 holds
for F being PartFunc of D,REAL
for r being Real st r = R . n & F = f . n holds
b2 . n = r (#) F ) holds
b1 = b2
end;
defpred S1[ Element of NAT ] means for D being non empty set
for F being PartFunc of D,REAL
for X, Y being set
for Z being finite set st Z = dom (F | Y) & dom (F | X) is finite & Y c= X & $1 = card Z & ( for d1, d2 being Element of D st d1 in dom (F | Y) & d2 in dom (F | (X \ Y)) holds
F . d1 >= F . d2 ) holds
FinS (F,X) = (FinS (F,Y)) ^ (FinS (F,(X \ Y)));
Lm3:
S1[ 0 ]
Lm4:
for n being Element of NAT st S1[n] holds
S1[n + 1]
:: Partial Functions from a Domain to the Set of Real Numbers
::