environ 
vocabularies HIDDEN, SUBSET_1, XBOOLE_0, FUNCT_1, NUMBERS, CARD_3, ORDINAL1, CARD_1, FUNCOP_1, RELAT_1, TARSKI, NAT_1, AMISTD_2, ZFMISC_1, AMI_1, ARYTM_3, RECDEF_2, FINSEQ_1, UNIALG_1, VALUED_0, SCMPDS_5, FUNCT_4, COMPOS_0, XTUPLE_0;
notations HIDDEN, TARSKI, XBOOLE_0, ZFMISC_1, XTUPLE_0, XFAMILY, MCART_1, SUBSET_1, SETFAM_1, ORDINAL1, PBOOLE, CARD_1, CARD_3, XXREAL_0, XCMPLX_0, RELAT_1, FUNCT_1, PARTFUN1, NUMBERS, INT_1, NAT_1, NAT_D, FUNCOP_1, FUNCT_4, FUNCT_7, FINSEQ_1, FUNCT_2, DOMAIN_1, VALUED_0, VALUED_1, RECDEF_2, AFINSQ_1, STRUCT_0;
definitions TARSKI, FUNCT_1, XBOOLE_0, VALUED_0, CARD_3;
theorems ZFMISC_1, TARSKI, CARD_3, FINSEQ_1, ENUMSET1, FUNCOP_1, FUNCT_1, XBOOLE_0, XBOOLE_1, ORDINAL1, MCART_1, RECDEF_2, VALUED_1, FUNCT_7, CHAIN_1, XTUPLE_0;
schemes ;
registrations XBOOLE_0, RELAT_1, FUNCT_1, ORDINAL1, XREAL_0, FINSEQ_1, CARD_3, RELSET_1, PRE_POLY, AFINSQ_1, VALUED_1, NAT_1, CARD_1, VALUED_0, XTUPLE_0;
constructors HIDDEN, SETFAM_1, DOMAIN_1, FUNCT_4, XXREAL_0, RELSET_1, FUNCT_7, PRE_POLY, PBOOLE, AFINSQ_1, NAT_D, WELLORD2, STRUCT_0, XTUPLE_0, XFAMILY;
requirements HIDDEN, NUMERALS, BOOLE, SUBSET, ARITHM, REAL;
equalities ZFMISC_1, TARSKI, XTUPLE_0;
expansions TARSKI, FUNCT_1, XBOOLE_0;
Lm1: 
 for T being   InsType of {[0,{},{}]} holds   JumpParts T = {0}
 
Lm2: 
 for S being   non  empty   standard-ins   homogeneous   set 
  for I being    Element of S
  for x being    set   st x in  dom (JumpPart I) holds 
(product" (JumpParts (InsCode I))) . x c=  NAT 
 
Lm3: 
 for S being   non  empty   standard-ins   homogeneous   set   st S is  J/A-independent  holds 
 for I being    Element of S
  for x being    set   st x in  dom (JumpPart I) holds 
 NAT  c= (product" (JumpParts (InsCode I))) . x
 
Lm4: 
 for T being   InsType of {[0,{},{}],[1,{},{}]} holds   JumpParts T = {0}
 
registration
coherence 
( {[0,{},{}],[1,{},{}]} is  J/A-independent  & {[0,{},{}],[1,{},{}]} is  homogeneous  )
 
 
end;