environ
vocabularies HIDDEN, NUMBERS, FINSEQ_1, SUBSET_1, RLVECT_1, ALGSTR_0, BINOP_1, VECTSP_1, LATTICES, XBOOLE_0, STRUCT_0, FUNCT_1, RLVECT_2, FUNCT_2, FINSET_1, SUPINF_2, FUNCOP_1, TARSKI, VALUED_1, NAT_1, RELAT_1, PARTFUN1, XXREAL_0, CARD_1, ORDINAL4, ARYTM_3, CARD_3, MESFUNC1, RLSUB_1, ARYTM_1, FINSEQ_4;
notations HIDDEN, TARSKI, XBOOLE_0, ENUMSET1, SUBSET_1, CARD_1, ORDINAL1, NUMBERS, XCMPLX_0, XXREAL_0, FINSET_1, PARTFUN1, FINSEQ_1, RELAT_1, FUNCT_1, FUNCT_2, FUNCOP_1, NAT_1, DOMAIN_1, STRUCT_0, ALGSTR_0, RLVECT_1, GROUP_1, VECTSP_1, FINSEQ_4, VFUNCT_1, VECTSP_4;
definitions FUNCT_1, TARSKI, VECTSP_4, XBOOLE_0;
theorems CARD_1, CARD_2, ENUMSET1, FINSEQ_1, FINSEQ_2, FINSEQ_3, FINSEQ_4, FUNCT_1, FUNCT_2, RLVECT_1, RLVECT_2, TARSKI, VECTSP_1, VFUNCT_1, VECTSP_4, ZFMISC_1, NAT_1, RELAT_1, XBOOLE_0, XBOOLE_1, XCMPLX_1, GROUP_1, FUNCOP_1, XREAL_1, PARTFUN1, ORDINAL1;
schemes FINSEQ_1, FUNCT_2, NAT_1;
registrations SUBSET_1, FUNCT_1, RELSET_1, FINSET_1, MEMBERED, STRUCT_0, VECTSP_1, XXREAL_0, CARD_1, FINSEQ_1, NAT_1, XCMPLX_0;
constructors HIDDEN, PARTFUN1, DOMAIN_1, FUNCOP_1, XXREAL_0, NAT_1, MEMBERED, FINSEQ_4, VECTSP_4, RELSET_1, VFUNCT_1;
requirements HIDDEN, NUMERALS, REAL, BOOLE, SUBSET;
equalities XBOOLE_0, RELAT_1;
expansions FUNCT_1, TARSKI, VECTSP_4, XBOOLE_0;
Lm1:
for GF being non empty right_complementable well-unital distributive Abelian add-associative right_zeroed associative doubleLoopStr
for V being non empty right_complementable vector-distributive scalar-distributive scalar-associative scalar-unital Abelian add-associative right_zeroed ModuleStr over GF holds Sum (ZeroLC V) = 0. V
Lm2:
for GF being non empty right_complementable well-unital distributive Abelian add-associative right_zeroed associative doubleLoopStr
for a being Element of GF holds (- (1. GF)) * a = - a
Lm3:
for GF being Field holds - (1. GF) <> 0. GF
:: Auxiliary theorems.
::