:: AFF_3 semantic presentation
definition
let c1 be
AffinPlane;
attr a1 is
satisfying_DES1 means :
Def1:
:: AFF_3:def 1
for
b1,
b2,
b3 being
Subset of
a1 for
b4,
b5,
b6,
b7,
b8,
b9,
b10,
b11,
b12 being
Element of
a1 st
b1 is_line &
b2 is_line &
b3 is_line &
b2 <> b1 &
b2 <> b3 &
b1 <> b3 &
b4 in b1 &
b5 in b1 &
b6 in b1 &
b4 in b2 &
b7 in b2 &
b8 in b2 &
b4 in b3 &
b9 in b3 &
b10 in b3 &
b4 <> b5 &
b4 <> b7 &
b4 <> b9 &
b11 <> b12 & not
LIN b7,
b5,
b9 & not
LIN b8,
b6,
b10 &
b5 <> b6 &
LIN b7,
b5,
b11 &
LIN b8,
b6,
b11 &
LIN b7,
b9,
b12 &
LIN b8,
b10,
b12 &
b5,
b9 // b6,
b10 holds
b5,
b9 // b11,
b12;
end;
:: deftheorem Def1 defines satisfying_DES1 AFF_3:def 1 :
for
b1 being
AffinPlane holds
(
b1 is
satisfying_DES1 iff for
b2,
b3,
b4 being
Subset of
b1 for
b5,
b6,
b7,
b8,
b9,
b10,
b11,
b12,
b13 being
Element of
b1 st
b2 is_line &
b3 is_line &
b4 is_line &
b3 <> b2 &
b3 <> b4 &
b2 <> b4 &
b5 in b2 &
b6 in b2 &
b7 in b2 &
b5 in b3 &
b8 in b3 &
b9 in b3 &
b5 in b4 &
b10 in b4 &
b11 in b4 &
b5 <> b6 &
b5 <> b8 &
b5 <> b10 &
b12 <> b13 & not
LIN b8,
b6,
b10 & not
LIN b9,
b7,
b11 &
b6 <> b7 &
LIN b8,
b6,
b12 &
LIN b9,
b7,
b12 &
LIN b8,
b10,
b13 &
LIN b9,
b11,
b13 &
b6,
b10 // b7,
b11 holds
b6,
b10 // b12,
b13 );
definition
let c1 be
AffinPlane;
attr a1 is
satisfying_DES1_1 means :
Def2:
:: AFF_3:def 2
for
b1,
b2,
b3 being
Subset of
a1 for
b4,
b5,
b6,
b7,
b8,
b9,
b10,
b11,
b12 being
Element of
a1 st
b1 is_line &
b2 is_line &
b3 is_line &
b2 <> b1 &
b2 <> b3 &
b1 <> b3 &
b4 in b1 &
b5 in b1 &
b6 in b1 &
b4 in b2 &
b7 in b2 &
b8 in b2 &
b4 in b3 &
b9 in b3 &
b10 in b3 &
b4 <> b5 &
b4 <> b7 &
b4 <> b9 &
b11 <> b12 &
b9 <> b12 & not
LIN b7,
b5,
b9 & not
LIN b8,
b6,
b10 &
LIN b7,
b5,
b11 &
LIN b8,
b6,
b11 &
LIN b7,
b9,
b12 &
LIN b8,
b10,
b12 &
b5,
b9 // b11,
b12 holds
b5,
b9 // b6,
b10;
end;
:: deftheorem Def2 defines satisfying_DES1_1 AFF_3:def 2 :
for
b1 being
AffinPlane holds
(
b1 is
satisfying_DES1_1 iff for
b2,
b3,
b4 being
Subset of
b1 for
b5,
b6,
b7,
b8,
b9,
b10,
b11,
b12,
b13 being
Element of
b1 st
b2 is_line &
b3 is_line &
b4 is_line &
b3 <> b2 &
b3 <> b4 &
b2 <> b4 &
b5 in b2 &
b6 in b2 &
b7 in b2 &
b5 in b3 &
b8 in b3 &
b9 in b3 &
b5 in b4 &
b10 in b4 &
b11 in b4 &
b5 <> b6 &
b5 <> b8 &
b5 <> b10 &
b12 <> b13 &
b10 <> b13 & not
LIN b8,
b6,
b10 & not
LIN b9,
b7,
b11 &
LIN b8,
b6,
b12 &
LIN b9,
b7,
b12 &
LIN b8,
b10,
b13 &
LIN b9,
b11,
b13 &
b6,
b10 // b12,
b13 holds
b6,
b10 // b7,
b11 );
definition
let c1 be
AffinPlane;
attr a1 is
satisfying_DES1_2 means :
Def3:
:: AFF_3:def 3
for
b1,
b2,
b3 being
Subset of
a1 for
b4,
b5,
b6,
b7,
b8,
b9,
b10,
b11,
b12 being
Element of
a1 st
b1 is_line &
b2 is_line &
b3 is_line &
b2 <> b1 &
b2 <> b3 &
b1 <> b3 &
b4 in b1 &
b5 in b1 &
b6 in b1 &
b4 in b2 &
b7 in b2 &
b8 in b2 &
b9 in b3 &
b10 in b3 &
b4 <> b5 &
b4 <> b7 &
b4 <> b9 &
b11 <> b12 & not
LIN b7,
b5,
b9 & not
LIN b8,
b6,
b10 &
b9 <> b10 &
LIN b7,
b5,
b11 &
LIN b8,
b6,
b11 &
LIN b7,
b9,
b12 &
LIN b8,
b10,
b12 &
b5,
b9 // b6,
b10 &
b5,
b9 // b11,
b12 holds
b4 in b3;
end;
:: deftheorem Def3 defines satisfying_DES1_2 AFF_3:def 3 :
for
b1 being
AffinPlane holds
(
b1 is
satisfying_DES1_2 iff for
b2,
b3,
b4 being
Subset of
b1 for
b5,
b6,
b7,
b8,
b9,
b10,
b11,
b12,
b13 being
Element of
b1 st
b2 is_line &
b3 is_line &
b4 is_line &
b3 <> b2 &
b3 <> b4 &
b2 <> b4 &
b5 in b2 &
b6 in b2 &
b7 in b2 &
b5 in b3 &
b8 in b3 &
b9 in b3 &
b10 in b4 &
b11 in b4 &
b5 <> b6 &
b5 <> b8 &
b5 <> b10 &
b12 <> b13 & not
LIN b8,
b6,
b10 & not
LIN b9,
b7,
b11 &
b10 <> b11 &
LIN b8,
b6,
b12 &
LIN b9,
b7,
b12 &
LIN b8,
b10,
b13 &
LIN b9,
b11,
b13 &
b6,
b10 // b7,
b11 &
b6,
b10 // b12,
b13 holds
b5 in b4 );
definition
let c1 be
AffinPlane;
attr a1 is
satisfying_DES1_3 means :
Def4:
:: AFF_3:def 4
for
b1,
b2,
b3 being
Subset of
a1 for
b4,
b5,
b6,
b7,
b8,
b9,
b10,
b11,
b12 being
Element of
a1 st
b1 is_line &
b2 is_line &
b3 is_line &
b2 <> b1 &
b2 <> b3 &
b1 <> b3 &
b4 in b1 &
b5 in b1 &
b6 in b1 &
b7 in b2 &
b8 in b2 &
b4 in b3 &
b9 in b3 &
b10 in b3 &
b4 <> b5 &
b4 <> b7 &
b4 <> b9 &
b11 <> b12 & not
LIN b7,
b5,
b9 & not
LIN b8,
b6,
b10 &
b7 <> b8 &
b5 <> b6 &
LIN b7,
b5,
b11 &
LIN b8,
b6,
b11 &
LIN b7,
b9,
b12 &
LIN b8,
b10,
b12 &
b5,
b9 // b6,
b10 &
b5,
b9 // b11,
b12 holds
b4 in b2;
end;
:: deftheorem Def4 defines satisfying_DES1_3 AFF_3:def 4 :
for
b1 being
AffinPlane holds
(
b1 is
satisfying_DES1_3 iff for
b2,
b3,
b4 being
Subset of
b1 for
b5,
b6,
b7,
b8,
b9,
b10,
b11,
b12,
b13 being
Element of
b1 st
b2 is_line &
b3 is_line &
b4 is_line &
b3 <> b2 &
b3 <> b4 &
b2 <> b4 &
b5 in b2 &
b6 in b2 &
b7 in b2 &
b8 in b3 &
b9 in b3 &
b5 in b4 &
b10 in b4 &
b11 in b4 &
b5 <> b6 &
b5 <> b8 &
b5 <> b10 &
b12 <> b13 & not
LIN b8,
b6,
b10 & not
LIN b9,
b7,
b11 &
b8 <> b9 &
b6 <> b7 &
LIN b8,
b6,
b12 &
LIN b9,
b7,
b12 &
LIN b8,
b10,
b13 &
LIN b9,
b11,
b13 &
b6,
b10 // b7,
b11 &
b6,
b10 // b12,
b13 holds
b5 in b3 );
definition
let c1 be
AffinPlane;
attr a1 is
satisfying_DES2 means :
Def5:
:: AFF_3:def 5
for
b1,
b2,
b3 being
Subset of
a1 for
b4,
b5,
b6,
b7,
b8,
b9,
b10,
b11 being
Element of
a1 st
b1 is_line &
b2 is_line &
b3 is_line &
b1 <> b2 &
b1 <> b3 &
b2 <> b3 &
b4 in b1 &
b5 in b1 &
b6 in b2 &
b7 in b2 &
b8 in b3 &
b9 in b3 &
b1 // b2 &
b1 // b3 & not
LIN b6,
b4,
b8 & not
LIN b7,
b5,
b9 &
b10 <> b11 &
b4 <> b5 &
LIN b6,
b4,
b10 &
LIN b7,
b5,
b10 &
LIN b6,
b8,
b11 &
LIN b7,
b9,
b11 &
b4,
b8 // b5,
b9 holds
b4,
b8 // b10,
b11;
end;
:: deftheorem Def5 defines satisfying_DES2 AFF_3:def 5 :
for
b1 being
AffinPlane holds
(
b1 is
satisfying_DES2 iff for
b2,
b3,
b4 being
Subset of
b1 for
b5,
b6,
b7,
b8,
b9,
b10,
b11,
b12 being
Element of
b1 st
b2 is_line &
b3 is_line &
b4 is_line &
b2 <> b3 &
b2 <> b4 &
b3 <> b4 &
b5 in b2 &
b6 in b2 &
b7 in b3 &
b8 in b3 &
b9 in b4 &
b10 in b4 &
b2 // b3 &
b2 // b4 & not
LIN b7,
b5,
b9 & not
LIN b8,
b6,
b10 &
b11 <> b12 &
b5 <> b6 &
LIN b7,
b5,
b11 &
LIN b8,
b6,
b11 &
LIN b7,
b9,
b12 &
LIN b8,
b10,
b12 &
b5,
b9 // b6,
b10 holds
b5,
b9 // b11,
b12 );
definition
let c1 be
AffinPlane;
attr a1 is
satisfying_DES2_1 means :
Def6:
:: AFF_3:def 6
for
b1,
b2,
b3 being
Subset of
a1 for
b4,
b5,
b6,
b7,
b8,
b9,
b10,
b11 being
Element of
a1 st
b1 is_line &
b2 is_line &
b3 is_line &
b1 <> b2 &
b1 <> b3 &
b2 <> b3 &
b4 in b1 &
b5 in b1 &
b6 in b2 &
b7 in b2 &
b8 in b3 &
b9 in b3 &
b1 // b2 &
b1 // b3 & not
LIN b6,
b4,
b8 & not
LIN b7,
b5,
b9 &
b10 <> b11 &
LIN b6,
b4,
b10 &
LIN b7,
b5,
b10 &
LIN b6,
b8,
b11 &
LIN b7,
b9,
b11 &
b4,
b8 // b10,
b11 holds
b4,
b8 // b5,
b9;
end;
:: deftheorem Def6 defines satisfying_DES2_1 AFF_3:def 6 :
for
b1 being
AffinPlane holds
(
b1 is
satisfying_DES2_1 iff for
b2,
b3,
b4 being
Subset of
b1 for
b5,
b6,
b7,
b8,
b9,
b10,
b11,
b12 being
Element of
b1 st
b2 is_line &
b3 is_line &
b4 is_line &
b2 <> b3 &
b2 <> b4 &
b3 <> b4 &
b5 in b2 &
b6 in b2 &
b7 in b3 &
b8 in b3 &
b9 in b4 &
b10 in b4 &
b2 // b3 &
b2 // b4 & not
LIN b7,
b5,
b9 & not
LIN b8,
b6,
b10 &
b11 <> b12 &
LIN b7,
b5,
b11 &
LIN b8,
b6,
b11 &
LIN b7,
b9,
b12 &
LIN b8,
b10,
b12 &
b5,
b9 // b11,
b12 holds
b5,
b9 // b6,
b10 );
definition
let c1 be
AffinPlane;
attr a1 is
satisfying_DES2_2 means :
Def7:
:: AFF_3:def 7
for
b1,
b2,
b3 being
Subset of
a1 for
b4,
b5,
b6,
b7,
b8,
b9,
b10,
b11 being
Element of
a1 st
b1 is_line &
b2 is_line &
b3 is_line &
b1 <> b2 &
b1 <> b3 &
b2 <> b3 &
b4 in b1 &
b5 in b1 &
b6 in b2 &
b7 in b2 &
b8 in b3 &
b9 in b3 &
b1 // b3 & not
LIN b6,
b4,
b8 & not
LIN b7,
b5,
b9 &
b10 <> b11 &
b4 <> b5 &
LIN b6,
b4,
b10 &
LIN b7,
b5,
b10 &
LIN b6,
b8,
b11 &
LIN b7,
b9,
b11 &
b4,
b8 // b5,
b9 &
b4,
b8 // b10,
b11 holds
b1 // b2;
end;
:: deftheorem Def7 defines satisfying_DES2_2 AFF_3:def 7 :
for
b1 being
AffinPlane holds
(
b1 is
satisfying_DES2_2 iff for
b2,
b3,
b4 being
Subset of
b1 for
b5,
b6,
b7,
b8,
b9,
b10,
b11,
b12 being
Element of
b1 st
b2 is_line &
b3 is_line &
b4 is_line &
b2 <> b3 &
b2 <> b4 &
b3 <> b4 &
b5 in b2 &
b6 in b2 &
b7 in b3 &
b8 in b3 &
b9 in b4 &
b10 in b4 &
b2 // b4 & not
LIN b7,
b5,
b9 & not
LIN b8,
b6,
b10 &
b11 <> b12 &
b5 <> b6 &
LIN b7,
b5,
b11 &
LIN b8,
b6,
b11 &
LIN b7,
b9,
b12 &
LIN b8,
b10,
b12 &
b5,
b9 // b6,
b10 &
b5,
b9 // b11,
b12 holds
b2 // b3 );
definition
let c1 be
AffinPlane;
attr a1 is
satisfying_DES2_3 means :
Def8:
:: AFF_3:def 8
for
b1,
b2,
b3 being
Subset of
a1 for
b4,
b5,
b6,
b7,
b8,
b9,
b10,
b11 being
Element of
a1 st
b1 is_line &
b2 is_line &
b3 is_line &
b1 <> b2 &
b1 <> b3 &
b2 <> b3 &
b4 in b1 &
b5 in b1 &
b6 in b2 &
b7 in b2 &
b8 in b3 &
b9 in b3 &
b1 // b2 & not
LIN b6,
b4,
b8 & not
LIN b7,
b5,
b9 &
b10 <> b11 &
b8 <> b9 &
LIN b6,
b4,
b10 &
LIN b7,
b5,
b10 &
LIN b6,
b8,
b11 &
LIN b7,
b9,
b11 &
b4,
b8 // b5,
b9 &
b4,
b8 // b10,
b11 holds
b1 // b3;
end;
:: deftheorem Def8 defines satisfying_DES2_3 AFF_3:def 8 :
for
b1 being
AffinPlane holds
(
b1 is
satisfying_DES2_3 iff for
b2,
b3,
b4 being
Subset of
b1 for
b5,
b6,
b7,
b8,
b9,
b10,
b11,
b12 being
Element of
b1 st
b2 is_line &
b3 is_line &
b4 is_line &
b2 <> b3 &
b2 <> b4 &
b3 <> b4 &
b5 in b2 &
b6 in b2 &
b7 in b3 &
b8 in b3 &
b9 in b4 &
b10 in b4 &
b2 // b3 & not
LIN b7,
b5,
b9 & not
LIN b8,
b6,
b10 &
b11 <> b12 &
b9 <> b10 &
LIN b7,
b5,
b11 &
LIN b8,
b6,
b11 &
LIN b7,
b9,
b12 &
LIN b8,
b10,
b12 &
b5,
b9 // b6,
b10 &
b5,
b9 // b11,
b12 holds
b2 // b4 );
theorem Th1: :: AFF_3:1
canceled;
theorem Th2: :: AFF_3:2
canceled;
theorem Th3: :: AFF_3:3
canceled;
theorem Th4: :: AFF_3:4
canceled;
theorem Th5: :: AFF_3:5
canceled;
theorem Th6: :: AFF_3:6
canceled;
theorem Th7: :: AFF_3:7
canceled;
theorem Th8: :: AFF_3:8
canceled;
theorem Th9: :: AFF_3:9
theorem Th10: :: AFF_3:10
theorem Th11: :: AFF_3:11
theorem Th12: :: AFF_3:12
theorem Th13: :: AFF_3:13
theorem Th14: :: AFF_3:14
theorem Th15: :: AFF_3:15
theorem Th16: :: AFF_3:16
theorem Th17: :: AFF_3:17
theorem Th18: :: AFF_3:18