:: AFVECT01 semantic presentation
Lemma1:
for b1 being WeakAffVect
for b2, b3, b4 being Element of b1 st b2,b3 '||' b3,b4 & b2 <> b4 holds
b2,b3 // b3,b4
Lemma2:
for b1 being WeakAffVect
for b2, b3 being Element of b1 holds
( b2,b3 // b3,b2 iff ex b4, b5 being Element of b1 st
( b2,b3 '||' b4,b5 & b2,b4 '||' b4,b3 & b2,b5 '||' b5,b3 ) )
Lemma3:
for b1 being WeakAffVect
for b2, b3, b4, b5 being Element of b1 st b2,b3 '||' b4,b5 holds
b3,b2 '||' b4,b5
Lemma4:
for b1 being WeakAffVect
for b2, b3 being Element of b1 holds b2,b3 '||' b3,b2
Lemma5:
for b1 being WeakAffVect
for b2, b3, b4 being Element of b1 st b2,b3 '||' b4,b4 holds
b2 = b3
Lemma6:
for b1 being WeakAffVect
for b2, b3, b4, b5, b6, b7 being Element of b1 st b2,b3 '||' b6,b7 & b4,b5 '||' b6,b7 holds
b2,b3 '||' b4,b5
Lemma7:
for b1 being WeakAffVect
for b2, b3 being Element of b1 ex b4 being Element of b1 st b2,b4 '||' b4,b3
Lemma8:
for b1 being WeakAffVect
for b2, b3, b4, b5, b6 being Element of b1 st b2 <> b3 & b4 <> b5 & b6,b2 '||' b6,b3 & b6,b4 '||' b6,b5 holds
b2,b4 '||' b3,b5
Lemma9:
for b1 being WeakAffVect
for b2, b3 being Element of b1 holds
( b2 = b3 or ex b4 being Element of b1 st
( ( b2 <> b4 & b2,b3 '||' b3,b4 ) or ex b5, b6 being Element of b1 st
( b5 <> b6 & b2,b3 '||' b5,b6 & b2,b5 '||' b5,b3 & b2,b6 '||' b6,b3 ) ) )
Lemma10:
for b1 being WeakAffVect
for b2, b3, b4, b5, b6, b7 being Element of b1 st b2,b3 '||' b3,b7 & b3,b4 '||' b5,b6 & b3,b5 '||' b5,b4 & b3,b6 '||' b6,b4 holds
b2,b4 '||' b4,b7
Lemma11:
for b1 being WeakAffVect
for b2, b3, b4, b5 being Element of b1 st b2 <> b5 & b3 <> b4 & b2,b3 '||' b3,b5 & b2,b4 '||' b4,b5 holds
ex b6, b7 being Element of b1 st
( b6 <> b7 & b3,b4 '||' b6,b7 & b3,b6 '||' b6,b4 & b3,b7 '||' b7,b4 )
Lemma12:
for b1 being WeakAffVect
for b2, b3, b4, b5, b6, b7, b8 being Element of b1 st b2,b3 '||' b5,b6 & b2,b4 '||' b7,b8 & b2,b5 '||' b5,b3 & b2,b7 '||' b7,b4 & b2,b6 '||' b6,b3 & b2,b8 '||' b8,b4 holds
ex b9, b10 being Element of b1 st
( b3,b4 '||' b9,b10 & b3,b9 '||' b9,b4 & b3,b10 '||' b10,b4 )
consider c1 being WeakAffVect;
set c2 = the carrier of c1;
set c3 = [:the carrier of c1,the carrier of c1:];
defpred S1[ set , set ] means ex b1, b2, b3, b4 being Element of the carrier of c1 st
( a1 = [b1,b2] & a2 = [b3,b4] & b1,b2 '||' b3,b4 );
consider c4 being Relation of [:the carrier of c1,the carrier of c1:],[:the carrier of c1,the carrier of c1:] such that
Lemma13:
for b1, b2 being set holds
( [b1,b2] in c4 iff ( b1 in [:the carrier of c1,the carrier of c1:] & b2 in [:the carrier of c1,the carrier of c1:] & S1[b1,b2] ) )
from RELSET_1:sch 1();
Lemma14:
for b1, b2, b3, b4 being Element of the carrier of c1 holds
( [[b1,b2],[b3,b4]] in c4 iff b1,b2 '||' b3,b4 )
set c5 = AffinStruct(# the carrier of c1,c4 #);
Lemma15:
for b1, b2, b3, b4 being Element of c1
for b5, b6, b7, b8 being Element of the carrier of AffinStruct(# the carrier of c1,c4 #) st b1 = b5 & b2 = b6 & b3 = b7 & b4 = b8 holds
( b1,b2 '||' b3,b4 iff b5,b6 // b7,b8 )
E16:
now
thus
ex
b1,
b2 being
Element of
AffinStruct(# the
carrier of
c1,
c4 #) st
b1 <> b2
by REALSET2:def 7;
thus
for
b1,
b2 being
Element of
AffinStruct(# the
carrier of
c1,
c4 #) holds
b1,
b2 // b2,
b1
thus
for
b1,
b2 being
Element of
AffinStruct(# the
carrier of
c1,
c4 #) st
b1,
b2 // b1,
b1 holds
b1 = b2
thus
for
b1,
b2,
b3,
b4,
b5,
b6 being
Element of
AffinStruct(# the
carrier of
c1,
c4 #) st
b1,
b2 // b5,
b6 &
b3,
b4 // b5,
b6 holds
b1,
b2 // b3,
b4
proof
let c6,
c7,
c8,
c9,
c10,
c11 be
Element of
AffinStruct(# the
carrier of
c1,
c4 #);
assume E17:
(
c6,
c7 // c10,
c11 &
c8,
c9 // c10,
c11 )
;
reconsider c12 =
c6,
c13 =
c7,
c14 =
c8,
c15 =
c9,
c16 =
c10,
c17 =
c11 as
Element of
c1 ;
(
c12,
c13 '||' c16,
c17 &
c14,
c15 '||' c16,
c17 )
by E17, Lemma15;
then
c12,
c13 '||' c14,
c15
by Lemma6;
hence
c6,
c7 // c8,
c9
by Lemma15;
end;
thus
for
b1,
b2 being
Element of
AffinStruct(# the
carrier of
c1,
c4 #) ex
b3 being
Element of the
carrier of
AffinStruct(# the
carrier of
c1,
c4 #) st
b1,
b3 // b3,
b2
proof
let c6,
c7 be
Element of
AffinStruct(# the
carrier of
c1,
c4 #);
reconsider c8 =
c6,
c9 =
c7 as
Element of
c1 ;
consider c10 being
Element of
c1 such that E17:
c8,
c10 '||' c10,
c9
by Lemma7;
reconsider c11 =
c10 as
Element of
AffinStruct(# the
carrier of
c1,
c4 #) ;
c6,
c11 // c11,
c7
by E17, Lemma15;
hence
ex
b1 being
Element of the
carrier of
AffinStruct(# the
carrier of
c1,
c4 #) st
c6,
b1 // b1,
c7
;
end;
thus
for
b1,
b2,
b3,
b4,
b5 being
Element of
AffinStruct(# the
carrier of
c1,
c4 #) st
b1 <> b2 &
b3 <> b4 &
b5,
b1 // b5,
b2 &
b5,
b3 // b5,
b4 holds
b1,
b3 // b2,
b4
proof
let c6,
c7,
c8,
c9,
c10 be
Element of
AffinStruct(# the
carrier of
c1,
c4 #);
assume that E17:
(
c6 <> c7 &
c8 <> c9 )
and E18:
(
c10,
c6 // c10,
c7 &
c10,
c8 // c10,
c9 )
;
reconsider c11 =
c6,
c12 =
c7,
c13 =
c8,
c14 =
c9,
c15 =
c10 as
Element of
c1 ;
(
c15,
c11 '||' c15,
c12 &
c15,
c13 '||' c15,
c14 )
by E18, Lemma15;
then
c11,
c13 '||' c12,
c14
by E17, Lemma8;
hence
c6,
c8 // c7,
c9
by Lemma15;
end;
thus
for
b1,
b2 being
Element of
AffinStruct(# the
carrier of
c1,
c4 #) holds
(
b1 = b2 or ex
b3 being
Element of
AffinStruct(# the
carrier of
c1,
c4 #) st
( (
b1 <> b3 &
b1,
b2 // b2,
b3 ) or ex
b4,
b5 being
Element of
AffinStruct(# the
carrier of
c1,
c4 #) st
(
b4 <> b5 &
b1,
b2 // b4,
b5 &
b1,
b4 // b4,
b2 &
b1,
b5 // b5,
b2 ) ) )
proof
let c6,
c7 be
Element of
AffinStruct(# the
carrier of
c1,
c4 #);
assume E17:
not
c6 = c7
;
reconsider c8 =
c6,
c9 =
c7 as
Element of
c1 ;
now
given c10,
c11 being
Element of
c1 such that E19:
(
c10 <> c11 &
c8,
c9 '||' c10,
c11 &
c8,
c10 '||' c10,
c9 &
c8,
c11 '||' c11,
c9 )
;
reconsider c12 =
c10,
c13 =
c11 as
Element of
AffinStruct(# the
carrier of
c1,
c4 #) ;
(
c12 <> c13 &
c6,
c7 // c12,
c13 &
c6,
c12 // c12,
c7 &
c6,
c13 // c13,
c7 )
by E19, Lemma15;
hence
ex
b1,
b2 being
Element of
AffinStruct(# the
carrier of
c1,
c4 #) st
(
b1 <> b2 &
c6,
c7 // b1,
b2 &
c6,
b1 // b1,
c7 &
c6,
b2 // b2,
c7 )
;
end;
hence
ex
b1 being
Element of
AffinStruct(# the
carrier of
c1,
c4 #) st
( (
c6 <> b1 &
c6,
c7 // c7,
b1 ) or ex
b2,
b3 being
Element of
AffinStruct(# the
carrier of
c1,
c4 #) st
(
b2 <> b3 &
c6,
c7 // b2,
b3 &
c6,
b2 // b2,
c7 &
c6,
b3 // b3,
c7 ) )
by E17, E18, Lemma9;
end;
thus
for
b1,
b2,
b3,
b4,
b5,
b6 being
Element of
AffinStruct(# the
carrier of
c1,
c4 #) st
b1,
b2 // b2,
b6 &
b2,
b3 // b4,
b5 &
b2,
b4 // b4,
b3 &
b2,
b5 // b5,
b3 holds
b1,
b3 // b3,
b6
proof
let c6,
c7,
c8,
c9,
c10,
c11 be
Element of
AffinStruct(# the
carrier of
c1,
c4 #);
assume E17:
(
c6,
c7 // c7,
c11 &
c7,
c8 // c9,
c10 &
c7,
c9 // c9,
c8 &
c7,
c10 // c10,
c8 )
;
reconsider c12 =
c6,
c13 =
c7,
c14 =
c8,
c15 =
c9,
c16 =
c10,
c17 =
c11 as
Element of
c1 ;
(
c12,
c13 '||' c13,
c17 &
c13,
c14 '||' c15,
c16 &
c13,
c15 '||' c15,
c14 &
c13,
c16 '||' c16,
c14 )
by E17, Lemma15;
then
c12,
c14 '||' c14,
c17
by Lemma10;
hence
c6,
c8 // c8,
c11
by Lemma15;
end;
thus
for
b1,
b2,
b3,
b4 being
Element of
AffinStruct(# the
carrier of
c1,
c4 #) st
b1 <> b4 &
b2 <> b3 &
b1,
b2 // b2,
b4 &
b1,
b3 // b3,
b4 holds
ex
b5,
b6 being
Element of
AffinStruct(# the
carrier of
c1,
c4 #) st
(
b5 <> b6 &
b2,
b3 // b5,
b6 &
b2,
b5 // b5,
b3 &
b2,
b6 // b6,
b3 )
proof
let c6,
c7,
c8,
c9 be
Element of
AffinStruct(# the
carrier of
c1,
c4 #);
assume that E17:
(
c6 <> c9 &
c7 <> c8 )
and E18:
(
c6,
c7 // c7,
c9 &
c6,
c8 // c8,
c9 )
;
reconsider c10 =
c6,
c11 =
c7,
c12 =
c8,
c13 =
c9 as
Element of the
carrier of
c1 ;
(
c10,
c11 '||' c11,
c13 &
c10,
c12 '||' c12,
c13 )
by E18, Lemma15;
then consider c14,
c15 being
Element of
c1 such that E19:
(
c14 <> c15 &
c11,
c12 '||' c14,
c15 &
c11,
c14 '||' c14,
c12 &
c11,
c15 '||' c15,
c12 )
by E17, Lemma11;
reconsider c16 =
c14,
c17 =
c15 as
Element of
AffinStruct(# the
carrier of
c1,
c4 #) ;
(
c16 <> c17 &
c7,
c8 // c16,
c17 &
c7,
c16 // c16,
c8 &
c7,
c17 // c17,
c8 )
by E19, Lemma15;
hence
ex
b1,
b2 being
Element of
AffinStruct(# the
carrier of
c1,
c4 #) st
(
b1 <> b2 &
c7,
c8 // b1,
b2 &
c7,
b1 // b1,
c8 &
c7,
b2 // b2,
c8 )
;
end;
thus
for
b1,
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
AffinStruct(# the
carrier of
c1,
c4 #) st
b1,
b2 // b4,
b5 &
b1,
b3 // b6,
b7 &
b1,
b4 // b4,
b2 &
b1,
b6 // b6,
b3 &
b1,
b5 // b5,
b2 &
b1,
b7 // b7,
b3 holds
ex
b8,
b9 being
Element of
AffinStruct(# the
carrier of
c1,
c4 #) st
(
b2,
b3 // b8,
b9 &
b2,
b8 // b8,
b3 &
b2,
b9 // b9,
b3 )
proof
let c6,
c7,
c8,
c9,
c10,
c11,
c12 be
Element of
AffinStruct(# the
carrier of
c1,
c4 #);
assume E17:
(
c6,
c7 // c9,
c10 &
c6,
c8 // c11,
c12 &
c6,
c9 // c9,
c7 &
c6,
c11 // c11,
c8 &
c6,
c10 // c10,
c7 &
c6,
c12 // c12,
c8 )
;
reconsider c13 =
c6,
c14 =
c7,
c15 =
c8,
c16 =
c9,
c17 =
c10,
c18 =
c11,
c19 =
c12 as
Element of the
carrier of
c1 ;
(
c13,
c14 '||' c16,
c17 &
c13,
c15 '||' c18,
c19 &
c13,
c16 '||' c16,
c14 &
c13,
c18 '||' c18,
c15 &
c13,
c17 '||' c17,
c14 &
c13,
c19 '||' c19,
c15 )
by E17, Lemma15;
then consider c20,
c21 being
Element of
c1 such that E18:
(
c14,
c15 '||' c20,
c21 &
c14,
c20 '||' c20,
c15 &
c14,
c21 '||' c21,
c15 )
by Lemma12;
reconsider c22 =
c20,
c23 =
c21 as
Element of
AffinStruct(# the
carrier of
c1,
c4 #) ;
(
c7,
c8 // c22,
c23 &
c7,
c22 // c22,
c8 &
c7,
c23 // c23,
c8 )
by E18, Lemma15;
hence
ex
b1,
b2 being
Element of
AffinStruct(# the
carrier of
c1,
c4 #) st
(
c7,
c8 // b1,
b2 &
c7,
b1 // b1,
c8 &
c7,
b2 // b2,
c8 )
;
end;
end;
definition
let c6 be non
empty AffinStruct ;
canceled;attr a1 is
WeakAffSegm-like means :
Def2:
:: AFVECT01:def 2
( ( for
b1,
b2 being
Element of
a1 holds
b1,
b2 // b2,
b1 ) & ( for
b1,
b2 being
Element of
a1 st
b1,
b2 // b1,
b1 holds
b1 = b2 ) & ( for
b1,
b2,
b3,
b4,
b5,
b6 being
Element of
a1 st
b1,
b2 // b5,
b6 &
b3,
b4 // b5,
b6 holds
b1,
b2 // b3,
b4 ) & ( for
b1,
b2 being
Element of
a1 ex
b3 being
Element of
a1 st
b1,
b3 // b3,
b2 ) & ( for
b1,
b2,
b3,
b4,
b5 being
Element of
a1 st
b1 <> b2 &
b3 <> b4 &
b5,
b1 // b5,
b2 &
b5,
b3 // b5,
b4 holds
b1,
b3 // b2,
b4 ) & ( for
b1,
b2 being
Element of
a1 holds
(
b1 = b2 or ex
b3 being
Element of
a1 st
( (
b1 <> b3 &
b1,
b2 // b2,
b3 ) or ex
b4,
b5 being
Element of
a1 st
(
b4 <> b5 &
b1,
b2 // b4,
b5 &
b1,
b4 // b4,
b2 &
b1,
b5 // b5,
b2 ) ) ) ) & ( for
b1,
b2,
b3,
b4,
b5,
b6 being
Element of
a1 st
b1,
b2 // b2,
b6 &
b2,
b3 // b4,
b5 &
b2,
b4 // b4,
b3 &
b2,
b5 // b5,
b3 holds
b1,
b3 // b3,
b6 ) & ( for
b1,
b2,
b3,
b4 being
Element of
a1 st
b1 <> b4 &
b2 <> b3 &
b1,
b2 // b2,
b4 &
b1,
b3 // b3,
b4 holds
ex
b5,
b6 being
Element of
a1 st
(
b5 <> b6 &
b2,
b3 // b5,
b6 &
b2,
b5 // b5,
b3 &
b2,
b6 // b6,
b3 ) ) & ( for
b1,
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
a1 st
b1,
b2 // b4,
b5 &
b1,
b3 // b6,
b7 &
b1,
b4 // b4,
b2 &
b1,
b6 // b6,
b3 &
b1,
b5 // b5,
b2 &
b1,
b7 // b7,
b3 holds
ex
b8,
b9 being
Element of
a1 st
(
b2,
b3 // b8,
b9 &
b2,
b8 // b8,
b3 &
b2,
b9 // b9,
b3 ) ) );
end;
:: deftheorem Def1 AFVECT01:def 1 :
canceled;
:: deftheorem Def2 defines WeakAffSegm-like AFVECT01:def 2 :
for
b1 being non
empty AffinStruct holds
(
b1 is
WeakAffSegm-like iff ( ( for
b2,
b3 being
Element of
b1 holds
b2,
b3 // b3,
b2 ) & ( for
b2,
b3 being
Element of
b1 st
b2,
b3 // b2,
b2 holds
b2 = b3 ) & ( for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st
b2,
b3 // b6,
b7 &
b4,
b5 // b6,
b7 holds
b2,
b3 // b4,
b5 ) & ( for
b2,
b3 being
Element of
b1 ex
b4 being
Element of
b1 st
b2,
b4 // b4,
b3 ) & ( for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st
b2 <> b3 &
b4 <> b5 &
b6,
b2 // b6,
b3 &
b6,
b4 // b6,
b5 holds
b2,
b4 // b3,
b5 ) & ( for
b2,
b3 being
Element of
b1 holds
(
b2 = b3 or ex
b4 being
Element of
b1 st
( (
b2 <> b4 &
b2,
b3 // b3,
b4 ) or ex
b5,
b6 being
Element of
b1 st
(
b5 <> b6 &
b2,
b3 // b5,
b6 &
b2,
b5 // b5,
b3 &
b2,
b6 // b6,
b3 ) ) ) ) & ( for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st
b2,
b3 // b3,
b7 &
b3,
b4 // b5,
b6 &
b3,
b5 // b5,
b4 &
b3,
b6 // b6,
b4 holds
b2,
b4 // b4,
b7 ) & ( for
b2,
b3,
b4,
b5 being
Element of
b1 st
b2 <> b5 &
b3 <> b4 &
b2,
b3 // b3,
b5 &
b2,
b4 // b4,
b5 holds
ex
b6,
b7 being
Element of
b1 st
(
b6 <> b7 &
b3,
b4 // b6,
b7 &
b3,
b6 // b6,
b4 &
b3,
b7 // b7,
b4 ) ) & ( for
b2,
b3,
b4,
b5,
b6,
b7,
b8 being
Element of
b1 st
b2,
b3 // b5,
b6 &
b2,
b4 // b7,
b8 &
b2,
b5 // b5,
b3 &
b2,
b7 // b7,
b4 &
b2,
b6 // b6,
b3 &
b2,
b8 // b8,
b4 holds
ex
b9,
b10 being
Element of
b1 st
(
b3,
b4 // b9,
b10 &
b3,
b9 // b9,
b4 &
b3,
b10 // b10,
b4 ) ) ) );
theorem Th1: :: AFVECT01:1
theorem Th2: :: AFVECT01:2
theorem Th3: :: AFVECT01:3
theorem Th4: :: AFVECT01:4
theorem Th5: :: AFVECT01:5
theorem Th6: :: AFVECT01:6
theorem Th7: :: AFVECT01:7
for
b1 being
WeakAffSegm for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st
b2,
b3 // b4,
b5 &
b2,
b3 // b3,
b6 &
b2,
b4 // b4,
b3 &
b2,
b5 // b5,
b3 holds
b2 = b6
theorem Th8: :: AFVECT01:8
for
b1 being
WeakAffSegm for
b2,
b3,
b4,
b5 being
Element of
b1 st
b2,
b3 // b2,
b4 &
b2,
b5 // b2,
b4 & not
b5 = b3 & not
b5 = b4 holds
b3 = b4
:: deftheorem Def3 AFVECT01:def 3 :
canceled;
:: deftheorem Def4 defines MDist AFVECT01:def 4 :
:: deftheorem Def5 defines Mid AFVECT01:def 5 :
for
b1 being
WeakAffSegm for
b2,
b3,
b4 being
Element of
b1 holds
(
Mid b2,
b3,
b4 iff ( (
b2 = b3 &
b3 = b4 &
b2 = b4 ) or (
b2 = b4 &
MDist b2,
b3 ) or (
b2 <> b4 &
b2,
b3 // b3,
b4 ) ) );
theorem Th9: :: AFVECT01:9
canceled;
theorem Th10: :: AFVECT01:10
canceled;
theorem Th11: :: AFVECT01:11
theorem Th12: :: AFVECT01:12
theorem Th13: :: AFVECT01:13