:: BVFUNC_9 semantic presentation
Lemma1:
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 '&' b3 '<' b2
Lemma2:
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds
( (b2 '&' b3) '&' b4 '<' b2 & (b2 '&' b3) '&' b4 '<' b3 )
Lemma3:
for b1 being non empty set
for b2, b3, b4, b5 being Element of Funcs b1,BOOLEAN holds
( ((b2 '&' b3) '&' b4) '&' b5 '<' b2 & ((b2 '&' b3) '&' b4) '&' b5 '<' b3 )
Lemma4:
for b1 being non empty set
for b2, b3, b4, b5, b6 being Element of Funcs b1,BOOLEAN holds
( (((b2 '&' b3) '&' b4) '&' b5) '&' b6 '<' b2 & (((b2 '&' b3) '&' b4) '&' b5) '&' b6 '<' b3 )
Lemma5:
for b1 being non empty set
for b2, b3, b4, b5, b6, b7 being Element of Funcs b1,BOOLEAN holds
( ((((b2 '&' b3) '&' b4) '&' b5) '&' b6) '&' b7 '<' b2 & ((((b2 '&' b3) '&' b4) '&' b5) '&' b6) '&' b7 '<' b3 )
Lemma6:
for b1 being non empty set
for b2, b3, b4, b5, b6, b7, b8 being Element of Funcs b1,BOOLEAN holds
( (((((b2 '&' b3) '&' b4) '&' b5) '&' b6) '&' b7) '&' b8 '<' b2 & (((((b2 '&' b3) '&' b4) '&' b5) '&' b6) '&' b7) '&' b8 '<' b3 )
Lemma7:
for b1 being non empty set
for b2, b3, b4, b5, b6, b7, b8 being Element of Funcs b1,BOOLEAN holds
( ((((((b2 '&' b3) '&' b4) '&' b5) '&' b6) '&' b7) '&' b8) 'imp' b2 = I_el b1 & ((((((b2 '&' b3) '&' b4) '&' b5) '&' b6) '&' b7) '&' b8) 'imp' b3 = I_el b1 & ((((((b2 '&' b3) '&' b4) '&' b5) '&' b6) '&' b7) '&' b8) 'imp' b4 = I_el b1 & ((((((b2 '&' b3) '&' b4) '&' b5) '&' b6) '&' b7) '&' b8) 'imp' b5 = I_el b1 & ((((((b2 '&' b3) '&' b4) '&' b5) '&' b6) '&' b7) '&' b8) 'imp' b6 = I_el b1 & ((((((b2 '&' b3) '&' b4) '&' b5) '&' b6) '&' b7) '&' b8) 'imp' b7 = I_el b1 & ((((((b2 '&' b3) '&' b4) '&' b5) '&' b6) '&' b7) '&' b8) 'imp' b8 = I_el b1 )
theorem Th1: :: BVFUNC_9:1
theorem Th2: :: BVFUNC_9:2
theorem Th3: :: BVFUNC_9:3
theorem Th4: :: BVFUNC_9:4
theorem Th5: :: BVFUNC_9:5
theorem Th6: :: BVFUNC_9:6
theorem Th7: :: BVFUNC_9:7
theorem Th8: :: BVFUNC_9:8
theorem Th9: :: BVFUNC_9:9
theorem Th10: :: BVFUNC_9:10
theorem Th11: :: BVFUNC_9:11
theorem Th12: :: BVFUNC_9:12
theorem Th13: :: BVFUNC_9:13
theorem Th14: :: BVFUNC_9:14
theorem Th15: :: BVFUNC_9:15
theorem Th16: :: BVFUNC_9:16
theorem Th17: :: BVFUNC_9:17
theorem Th18: :: BVFUNC_9:18
theorem Th19: :: BVFUNC_9:19
theorem Th20: :: BVFUNC_9:20
theorem Th21: :: BVFUNC_9:21
theorem Th22: :: BVFUNC_9:22
theorem Th23: :: BVFUNC_9:23
theorem Th24: :: BVFUNC_9:24
Lemma14:
for b1 being non empty set
for b2, b3, b4, b5, b6, b7 being Element of Funcs b1,BOOLEAN holds (((((((b2 'imp' b5) '&' (b3 'imp' b6)) '&' (b4 'imp' b7)) '&' ((b2 'or' b3) 'or' b4)) '&' ('not' (b5 '&' b6))) '&' ('not' (b5 '&' b7))) '&' ('not' (b6 '&' b7))) 'imp' (((((b2 'imp' b5) '&' (b3 'imp' b6)) '&' ((b2 'or' b3) 'or' b4)) '&' ('not' (b7 '&' b5))) '&' ('not' (b7 '&' b6))) = I_el b1
Lemma15:
for b1 being non empty set
for b2, b3, b4, b5, b6, b7 being Element of Funcs b1,BOOLEAN holds (((((((b2 'imp' b5) '&' (b3 'imp' b6)) '&' (b4 'imp' b7)) '&' ((b2 'or' b3) 'or' b4)) '&' ('not' (b5 '&' b6))) '&' ('not' (b5 '&' b7))) '&' ('not' (b6 '&' b7))) 'imp' (((((b2 'imp' b5) '&' (b4 'imp' b7)) '&' ((b2 'or' b3) 'or' b4)) '&' ('not' (b6 '&' b5))) '&' ('not' (b6 '&' b7))) = I_el b1
Lemma16:
for b1 being non empty set
for b2, b3, b4, b5, b6, b7 being Element of Funcs b1,BOOLEAN holds (((((((b2 'imp' b5) '&' (b3 'imp' b6)) '&' (b4 'imp' b7)) '&' ((b2 'or' b3) 'or' b4)) '&' ('not' (b5 '&' b6))) '&' ('not' (b5 '&' b7))) '&' ('not' (b6 '&' b7))) 'imp' (((((b3 'imp' b6) '&' (b4 'imp' b7)) '&' ((b2 'or' b3) 'or' b4)) '&' ('not' (b5 '&' b6))) '&' ('not' (b5 '&' b7))) = I_el b1
theorem Th25: :: BVFUNC_9:25
theorem Th26: :: BVFUNC_9:26
theorem Th27: :: BVFUNC_9:27
theorem Th28: :: BVFUNC_9:28
theorem Th29: :: BVFUNC_9:29
theorem Th30: :: BVFUNC_9:30
theorem Th31: :: BVFUNC_9:31
theorem Th32: :: BVFUNC_9:32
theorem Th33: :: BVFUNC_9:33
theorem Th34: :: BVFUNC_9:34
theorem Th35: :: BVFUNC_9:35
theorem Th36: :: BVFUNC_9:36
theorem Th37: :: BVFUNC_9:37
theorem Th38: :: BVFUNC_9:38
theorem Th39: :: BVFUNC_9:39
theorem Th40: :: BVFUNC_9:40