:: BVFUNC_9 semantic presentation

Lemma1: for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 '&' b3 '<' b2
proof end;

Lemma2: for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds
( (b2 '&' b3) '&' b4 '<' b2 & (b2 '&' b3) '&' b4 '<' b3 )
proof end;

Lemma3: for b1 being non empty set
for b2, b3, b4, b5 being Element of Funcs b1,BOOLEAN holds
( ((b2 '&' b3) '&' b4) '&' b5 '<' b2 & ((b2 '&' b3) '&' b4) '&' b5 '<' b3 )
proof end;

Lemma4: for b1 being non empty set
for b2, b3, b4, b5, b6 being Element of Funcs b1,BOOLEAN holds
( (((b2 '&' b3) '&' b4) '&' b5) '&' b6 '<' b2 & (((b2 '&' b3) '&' b4) '&' b5) '&' b6 '<' b3 )
proof end;

Lemma5: for b1 being non empty set
for b2, b3, b4, b5, b6, b7 being Element of Funcs b1,BOOLEAN holds
( ((((b2 '&' b3) '&' b4) '&' b5) '&' b6) '&' b7 '<' b2 & ((((b2 '&' b3) '&' b4) '&' b5) '&' b6) '&' b7 '<' b3 )
proof end;

Lemma6: for b1 being non empty set
for b2, b3, b4, b5, b6, b7, b8 being Element of Funcs b1,BOOLEAN holds
( (((((b2 '&' b3) '&' b4) '&' b5) '&' b6) '&' b7) '&' b8 '<' b2 & (((((b2 '&' b3) '&' b4) '&' b5) '&' b6) '&' b7) '&' b8 '<' b3 )
proof end;

Lemma7: for b1 being non empty set
for b2, b3, b4, b5, b6, b7, b8 being Element of Funcs b1,BOOLEAN holds
( ((((((b2 '&' b3) '&' b4) '&' b5) '&' b6) '&' b7) '&' b8) 'imp' b2 = I_el b1 & ((((((b2 '&' b3) '&' b4) '&' b5) '&' b6) '&' b7) '&' b8) 'imp' b3 = I_el b1 & ((((((b2 '&' b3) '&' b4) '&' b5) '&' b6) '&' b7) '&' b8) 'imp' b4 = I_el b1 & ((((((b2 '&' b3) '&' b4) '&' b5) '&' b6) '&' b7) '&' b8) 'imp' b5 = I_el b1 & ((((((b2 '&' b3) '&' b4) '&' b5) '&' b6) '&' b7) '&' b8) 'imp' b6 = I_el b1 & ((((((b2 '&' b3) '&' b4) '&' b5) '&' b6) '&' b7) '&' b8) 'imp' b7 = I_el b1 & ((((((b2 '&' b3) '&' b4) '&' b5) '&' b6) '&' b7) '&' b8) 'imp' b8 = I_el b1 )
proof end;

theorem Th1: :: BVFUNC_9:1
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 'or' b3) '&' (b3 'imp' b4) '<' b2 'or' b4
proof end;

theorem Th2: :: BVFUNC_9:2
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 '&' (b2 'imp' b3) '<' b3
proof end;

theorem Th3: :: BVFUNC_9:3
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) '&' ('not' b3) '<' 'not' b2
proof end;

theorem Th4: :: BVFUNC_9:4
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds (b2 'or' b3) '&' ('not' b2) '<' b3
proof end;

theorem Th5: :: BVFUNC_9:5
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) '&' (('not' b2) 'imp' b3) '<' b3
proof end;

theorem Th6: :: BVFUNC_9:6
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) '&' (b2 'imp' ('not' b3)) '<' 'not' b2
proof end;

theorem Th7: :: BVFUNC_9:7
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds b2 'imp' (b3 '&' b4) '<' b2 'imp' b3
proof end;

theorem Th8: :: BVFUNC_9:8
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 'or' b3) 'imp' b4 '<' b2 'imp' b4
proof end;

theorem Th9: :: BVFUNC_9:9
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds b2 'imp' b3 '<' (b2 '&' b4) 'imp' b3
proof end;

theorem Th10: :: BVFUNC_9:10
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds b2 'imp' b3 '<' (b2 '&' b4) 'imp' (b3 '&' b4)
proof end;

theorem Th11: :: BVFUNC_9:11
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds b2 'imp' b3 '<' b2 'imp' (b3 'or' b4)
proof end;

theorem Th12: :: BVFUNC_9:12
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds b2 'imp' b3 '<' (b2 'or' b4) 'imp' (b3 'or' b4)
proof end;

theorem Th13: :: BVFUNC_9:13
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 '&' b3) 'or' b4 '<' b2 'or' b4
proof end;

theorem Th14: :: BVFUNC_9:14
for b1 being non empty set
for b2, b3, b4, b5 being Element of Funcs b1,BOOLEAN holds (b2 '&' b3) 'or' (b4 '&' b5) '<' b2 'or' b4
proof end;

theorem Th15: :: BVFUNC_9:15
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 'or' b3) '&' (b3 'imp' b4) '<' b2 'or' b4
proof end;

theorem Th16: :: BVFUNC_9:16
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) '&' (('not' b2) 'imp' b4) '<' b3 'or' b4
proof end;

theorem Th17: :: BVFUNC_9:17
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) '&' (b4 'imp' ('not' b3)) '<' ('not' b2) 'or' ('not' b4)
proof end;

theorem Th18: :: BVFUNC_9:18
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 'or' b3) '&' (('not' b2) 'or' b4) '<' b3 'or' b4
proof end;

theorem Th19: :: BVFUNC_9:19
for b1 being non empty set
for b2, b3, b4, b5 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) '&' (b4 'imp' b5) '<' (b2 '&' b4) 'imp' (b3 '&' b5)
proof end;

theorem Th20: :: BVFUNC_9:20
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) '&' (b2 'imp' b4) '<' b2 'imp' (b3 '&' b4)
proof end;

theorem Th21: :: BVFUNC_9:21
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) '&' (b4 'imp' b3) '<' (b2 'or' b4) 'imp' b3
proof end;

theorem Th22: :: BVFUNC_9:22
for b1 being non empty set
for b2, b3, b4, b5 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) '&' (b4 'imp' b5) '<' (b2 'or' b4) 'imp' (b3 'or' b5)
proof end;

theorem Th23: :: BVFUNC_9:23
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds (b2 'imp' b3) '&' (b2 'imp' b4) '<' b2 'imp' (b3 'or' b4)
proof end;

theorem Th24: :: BVFUNC_9:24
for b1 being non empty set
for b2, b3, b4, b5, b6, b7 being Element of Funcs b1,BOOLEAN holds ((((b3 'imp' b6) '&' (b4 'imp' b7)) '&' ((b2 'or' b3) 'or' b4)) '&' ('not' (b5 '&' b6))) '&' ('not' (b5 '&' b7)) '<' b5 'imp' b2
proof end;

Lemma14: for b1 being non empty set
for b2, b3, b4, b5, b6, b7 being Element of Funcs b1,BOOLEAN holds (((((((b2 'imp' b5) '&' (b3 'imp' b6)) '&' (b4 'imp' b7)) '&' ((b2 'or' b3) 'or' b4)) '&' ('not' (b5 '&' b6))) '&' ('not' (b5 '&' b7))) '&' ('not' (b6 '&' b7))) 'imp' (((((b2 'imp' b5) '&' (b3 'imp' b6)) '&' ((b2 'or' b3) 'or' b4)) '&' ('not' (b7 '&' b5))) '&' ('not' (b7 '&' b6))) = I_el b1
proof end;

Lemma15: for b1 being non empty set
for b2, b3, b4, b5, b6, b7 being Element of Funcs b1,BOOLEAN holds (((((((b2 'imp' b5) '&' (b3 'imp' b6)) '&' (b4 'imp' b7)) '&' ((b2 'or' b3) 'or' b4)) '&' ('not' (b5 '&' b6))) '&' ('not' (b5 '&' b7))) '&' ('not' (b6 '&' b7))) 'imp' (((((b2 'imp' b5) '&' (b4 'imp' b7)) '&' ((b2 'or' b3) 'or' b4)) '&' ('not' (b6 '&' b5))) '&' ('not' (b6 '&' b7))) = I_el b1
proof end;

Lemma16: for b1 being non empty set
for b2, b3, b4, b5, b6, b7 being Element of Funcs b1,BOOLEAN holds (((((((b2 'imp' b5) '&' (b3 'imp' b6)) '&' (b4 'imp' b7)) '&' ((b2 'or' b3) 'or' b4)) '&' ('not' (b5 '&' b6))) '&' ('not' (b5 '&' b7))) '&' ('not' (b6 '&' b7))) 'imp' (((((b3 'imp' b6) '&' (b4 'imp' b7)) '&' ((b2 'or' b3) 'or' b4)) '&' ('not' (b5 '&' b6))) '&' ('not' (b5 '&' b7))) = I_el b1
proof end;

theorem Th25: :: BVFUNC_9:25
for b1 being non empty set
for b2, b3, b4, b5, b6, b7 being Element of Funcs b1,BOOLEAN holds ((((((b2 'imp' b5) '&' (b3 'imp' b6)) '&' (b4 'imp' b7)) '&' ((b2 'or' b3) 'or' b4)) '&' ('not' (b5 '&' b6))) '&' ('not' (b5 '&' b7))) '&' ('not' (b6 '&' b7)) '<' ((b5 'imp' b2) '&' (b6 'imp' b3)) '&' (b7 'imp' b4)
proof end;

theorem Th26: :: BVFUNC_9:26
for b1 being non empty set
for b2, b3, b4, b5 being Element of Funcs b1,BOOLEAN holds (((b2 'imp' b4) '&' (b3 'imp' b5)) '&' ('not' (b4 '&' b5))) 'imp' ('not' (b2 '&' b3)) = I_el b1
proof end;

theorem Th27: :: BVFUNC_9:27
for b1 being non empty set
for b2, b3, b4, b5, b6, b7 being Element of Funcs b1,BOOLEAN holds (((((b2 'imp' b5) '&' (b3 'imp' b6)) '&' (b4 'imp' b7)) '&' ('not' (b5 '&' b6))) '&' ('not' (b5 '&' b7))) '&' ('not' (b6 '&' b7)) '<' (('not' (b2 '&' b3)) '&' ('not' (b2 '&' b4))) '&' ('not' (b3 '&' b4))
proof end;

theorem Th28: :: BVFUNC_9:28
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 '&' b3 '<' b2 by Lemma1;

theorem Th29: :: BVFUNC_9:29
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds
( (b2 '&' b3) '&' b4 '<' b2 & (b2 '&' b3) '&' b4 '<' b3 ) by Lemma2;

theorem Th30: :: BVFUNC_9:30
for b1 being non empty set
for b2, b3, b4, b5 being Element of Funcs b1,BOOLEAN holds
( ((b2 '&' b3) '&' b4) '&' b5 '<' b2 & ((b2 '&' b3) '&' b4) '&' b5 '<' b3 ) by Lemma3;

theorem Th31: :: BVFUNC_9:31
for b1 being non empty set
for b2, b3, b4, b5, b6 being Element of Funcs b1,BOOLEAN holds
( (((b2 '&' b3) '&' b4) '&' b5) '&' b6 '<' b2 & (((b2 '&' b3) '&' b4) '&' b5) '&' b6 '<' b3 ) by Lemma4;

theorem Th32: :: BVFUNC_9:32
for b1 being non empty set
for b2, b3, b4, b5, b6, b7 being Element of Funcs b1,BOOLEAN holds
( ((((b2 '&' b3) '&' b4) '&' b5) '&' b6) '&' b7 '<' b2 & ((((b2 '&' b3) '&' b4) '&' b5) '&' b6) '&' b7 '<' b3 ) by Lemma5;

theorem Th33: :: BVFUNC_9:33
for b1 being non empty set
for b2, b3, b4, b5, b6, b7, b8 being Element of Funcs b1,BOOLEAN holds
( (((((b2 '&' b3) '&' b4) '&' b5) '&' b6) '&' b7) '&' b8 '<' b2 & (((((b2 '&' b3) '&' b4) '&' b5) '&' b6) '&' b7) '&' b8 '<' b3 ) by Lemma6;

theorem Th34: :: BVFUNC_9:34
for b1 being non empty set
for b2, b3, b4, b5 being Element of Funcs b1,BOOLEAN st b2 '<' b3 & b4 '<' b5 holds
b2 '&' b4 '<' b3 '&' b5
proof end;

theorem Th35: :: BVFUNC_9:35
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN st b2 '&' b3 '<' b4 holds
b2 '&' ('not' b4) '<' 'not' b3
proof end;

theorem Th36: :: BVFUNC_9:36
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds ((b2 'imp' b3) '&' (b4 'imp' b3)) '&' (b2 'or' b4) '<' b3
proof end;

theorem Th37: :: BVFUNC_9:37
for b1 being non empty set
for b2, b3, b4 being Element of Funcs b1,BOOLEAN holds ((b2 'imp' b3) 'or' (b4 'imp' b3)) '&' (b2 '&' b4) '<' b3
proof end;

theorem Th38: :: BVFUNC_9:38
for b1 being non empty set
for b2, b3, b4, b5 being Element of Funcs b1,BOOLEAN st b2 '<' b3 & b4 '<' b5 holds
b2 'or' b4 '<' b3 'or' b5
proof end;

theorem Th39: :: BVFUNC_9:39
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 '<' b2 'or' b3
proof end;

theorem Th40: :: BVFUNC_9:40
for b1 being non empty set
for b2, b3 being Element of Funcs b1,BOOLEAN holds b2 '&' b3 '<' b2 'or' b3
proof end;