:: FILEREC1 semantic presentation
theorem Th1: :: FILEREC1:1
for
b1 being non
empty set for
b2,
b3,
b4,
b5 being
FinSequence of
b1 holds
(
((b2 ^ b3) ^ b4) ^ b5 = (b2 ^ (b3 ^ b4)) ^ b5 &
((b2 ^ b3) ^ b4) ^ b5 = (b2 ^ b3) ^ (b4 ^ b5) &
(b2 ^ (b3 ^ b4)) ^ b5 = (b2 ^ b3) ^ (b4 ^ b5) )
theorem Th2: :: FILEREC1:2
theorem Th3: :: FILEREC1:3
theorem Th4: :: FILEREC1:4
theorem Th5: :: FILEREC1:5
theorem Th6: :: FILEREC1:6
theorem Th7: :: FILEREC1:7
theorem Th8: :: FILEREC1:8
theorem Th9: :: FILEREC1:9
theorem Th10: :: FILEREC1:10
theorem Th11: :: FILEREC1:11
theorem Th12: :: FILEREC1:12
theorem Th13: :: FILEREC1:13
theorem Th14: :: FILEREC1:14
theorem Th15: :: FILEREC1:15
theorem Th16: :: FILEREC1:16
theorem Th17: :: FILEREC1:17
theorem Th18: :: FILEREC1:18
theorem Th19: :: FILEREC1:19
theorem Th20: :: FILEREC1:20
theorem Th21: :: FILEREC1:21
:: deftheorem Def1 defines is_a_record_of FILEREC1:def 1 :
theorem Th22: :: FILEREC1:22
theorem Th23: :: FILEREC1:23
theorem Th24: :: FILEREC1:24
theorem Th25: :: FILEREC1:25
theorem Th26: :: FILEREC1:26
theorem Th27: :: FILEREC1:27
theorem Th28: :: FILEREC1:28
theorem Th29: :: FILEREC1:29
theorem Th30: :: FILEREC1:30
theorem Th31: :: FILEREC1:31
theorem Th32: :: FILEREC1:32
theorem Th33: :: FILEREC1:33
theorem Th34: :: FILEREC1:34
theorem Th35: :: FILEREC1:35
theorem Th36: :: FILEREC1:36
theorem Th37: :: FILEREC1:37
theorem Th38: :: FILEREC1:38
theorem Th39: :: FILEREC1:39
theorem Th40: :: FILEREC1:40
theorem Th41: :: FILEREC1:41
theorem Th42: :: FILEREC1:42
theorem Th43: :: FILEREC1:43
theorem Th44: :: FILEREC1:44
theorem Th45: :: FILEREC1:45