:: HENMODEL semantic presentation
theorem Th1: :: HENMODEL:1
theorem Th2: :: HENMODEL:2
:: deftheorem Def1 defines min* HENMODEL:def 1 :
theorem Th3: :: HENMODEL:3
:: deftheorem Def2 defines |- HENMODEL:def 2 :
:: deftheorem Def3 defines Consistent HENMODEL:def 3 :
:: deftheorem Def4 defines Consistent HENMODEL:def 4 :
theorem Th4: :: HENMODEL:4
theorem Th5: :: HENMODEL:5
theorem Th6: :: HENMODEL:6
theorem Th7: :: HENMODEL:7
Lemma12:
for b1, b2 being FinSequence holds Seg (len (b1 ^ b2)) = (Seg (len b1)) \/ (seq (len b1),(len b2))
by CALCUL_2:9;
Lemma13:
for b1, b2 being Nat holds Seg b1 misses seq b1,b2
by CALCUL_2:8;
theorem Th8: :: HENMODEL:8
theorem Th9: :: HENMODEL:9
theorem Th10: :: HENMODEL:10
theorem Th11: :: HENMODEL:11
theorem Th12: :: HENMODEL:12
theorem Th13: :: HENMODEL:13
:: deftheorem Def5 defines HCar HENMODEL:def 5 :
:: deftheorem Def6 defines Henkin_interpretation HENMODEL:def 6 :
:: deftheorem Def7 defines valH HENMODEL:def 7 :
theorem Th14: :: HENMODEL:14
theorem Th15: :: HENMODEL:15
theorem Th16: :: HENMODEL:16
theorem Th17: :: HENMODEL:17