:: L_HOSPIT semantic presentation
theorem Th1: :: L_HOSPIT:1
theorem Th2: :: L_HOSPIT:2
theorem Th3: :: L_HOSPIT:3
theorem Th4: :: L_HOSPIT:4
theorem Th5: :: L_HOSPIT:5
theorem Th6: :: L_HOSPIT:6
theorem Th7: :: L_HOSPIT:7
for
b1,
b2 being
PartFunc of
REAL ,
REAL for
b3 being
Real st ex
b4 being
Real st
(
b4 > 0 &
b1 is_differentiable_on ].b3,(b3 + b4).[ &
b2 is_differentiable_on ].b3,(b3 + b4).[ &
].b3,(b3 + b4).[ c= dom (b1 / b2) &
[.b3,(b3 + b4).] c= dom ((b1 `| ].b3,(b3 + b4).[) / (b2 `| ].b3,(b3 + b4).[)) &
b1 . b3 = 0 &
b2 . b3 = 0 &
b1 is_continuous_in b3 &
b2 is_continuous_in b3 &
(b1 `| ].b3,(b3 + b4).[) / (b2 `| ].b3,(b3 + b4).[) is_right_convergent_in b3 ) holds
(
b1 / b2 is_right_convergent_in b3 & ex
b4 being
Real st
(
b4 > 0 &
lim_right (b1 / b2),
b3 = lim_right ((b1 `| ].b3,(b3 + b4).[) / (b2 `| ].b3,(b3 + b4).[)),
b3 ) )
theorem Th8: :: L_HOSPIT:8
for
b1,
b2 being
PartFunc of
REAL ,
REAL for
b3 being
Real st ex
b4 being
Real st
(
b4 > 0 &
b1 is_differentiable_on ].(b3 - b4),b3.[ &
b2 is_differentiable_on ].(b3 - b4),b3.[ &
].(b3 - b4),b3.[ c= dom (b1 / b2) &
[.(b3 - b4),b3.] c= dom ((b1 `| ].(b3 - b4),b3.[) / (b2 `| ].(b3 - b4),b3.[)) &
b1 . b3 = 0 &
b2 . b3 = 0 &
b1 is_continuous_in b3 &
b2 is_continuous_in b3 &
(b1 `| ].(b3 - b4),b3.[) / (b2 `| ].(b3 - b4),b3.[) is_left_convergent_in b3 ) holds
(
b1 / b2 is_left_convergent_in b3 & ex
b4 being
Real st
(
b4 > 0 &
lim_left (b1 / b2),
b3 = lim_left ((b1 `| ].(b3 - b4),b3.[) / (b2 `| ].(b3 - b4),b3.[)),
b3 ) )
theorem Th9: :: L_HOSPIT:9
theorem Th10: :: L_HOSPIT:10