:: LIMFUNC3 semantic presentation
Lemma1:
for b1, b2, b3 being set st b1 c= b2 \ b3 holds
b1 c= b2
Lemma2:
for b1, b2, b3 being real number st 0 < b1 & b2 <= b3 holds
( b2 - b1 < b3 & b2 < b3 + b1 )
Lemma3:
for b1 being Real_Sequence
for b2, b3 being PartFunc of REAL , REAL
for b4 being set st rng b1 c= (dom (b2 (#) b3)) \ b4 holds
( rng b1 c= dom (b2 (#) b3) & dom (b2 (#) b3) = (dom b2) /\ (dom b3) & rng b1 c= dom b2 & rng b1 c= dom b3 & rng b1 c= (dom b2) \ b4 & rng b1 c= (dom b3) \ b4 )
Lemma4:
for b1 being Real
for b2 being Nat holds
( b1 - (1 / (b2 + 1)) < b1 & b1 < b1 + (1 / (b2 + 1)) )
Lemma5:
for b1 being Nat holds 0 < 1 / (b1 + 1)
by XREAL_1:141;
Lemma6:
for b1 being Real_Sequence
for b2, b3 being PartFunc of REAL , REAL
for b4 being set st rng b1 c= (dom (b2 + b3)) \ b4 holds
( rng b1 c= dom (b2 + b3) & dom (b2 + b3) = (dom b2) /\ (dom b3) & rng b1 c= dom b2 & rng b1 c= dom b3 & rng b1 c= (dom b2) \ b4 & rng b1 c= (dom b3) \ b4 )
theorem Th1: :: LIMFUNC3:1
theorem Th2: :: LIMFUNC3:2
theorem Th3: :: LIMFUNC3:3
theorem Th4: :: LIMFUNC3:4
theorem Th5: :: LIMFUNC3:5
theorem Th6: :: LIMFUNC3:6
theorem Th7: :: LIMFUNC3:7
theorem Th8: :: LIMFUNC3:8
for
b1 being
Real for
b2 being
PartFunc of
REAL ,
REAL holds
( ( for
b3,
b4 being
Real st
b3 < b1 &
b1 < b4 holds
ex
b5,
b6 being
Real st
(
b3 < b5 &
b5 < b1 &
b5 in dom b2 &
b6 < b4 &
b1 < b6 &
b6 in dom b2 ) ) iff ( ( for
b3 being
Real st
b3 < b1 holds
ex
b4 being
Real st
(
b3 < b4 &
b4 < b1 &
b4 in dom b2 ) ) & ( for
b3 being
Real st
b1 < b3 holds
ex
b4 being
Real st
(
b4 < b3 &
b1 < b4 &
b4 in dom b2 ) ) ) )
:: deftheorem Def1 defines is_convergent_in LIMFUNC3:def 1 :
:: deftheorem Def2 defines is_divergent_to+infty_in LIMFUNC3:def 2 :
:: deftheorem Def3 defines is_divergent_to-infty_in LIMFUNC3:def 3 :
theorem Th9: :: LIMFUNC3:9
canceled;
theorem Th10: :: LIMFUNC3:10
canceled;
theorem Th11: :: LIMFUNC3:11
canceled;
theorem Th12: :: LIMFUNC3:12
theorem Th13: :: LIMFUNC3:13
theorem Th14: :: LIMFUNC3:14
theorem Th15: :: LIMFUNC3:15
theorem Th16: :: LIMFUNC3:16
theorem Th17: :: LIMFUNC3:17
theorem Th18: :: LIMFUNC3:18
theorem Th19: :: LIMFUNC3:19
theorem Th20: :: LIMFUNC3:20
theorem Th21: :: LIMFUNC3:21
theorem Th22: :: LIMFUNC3:22
theorem Th23: :: LIMFUNC3:23
theorem Th24: :: LIMFUNC3:24
theorem Th25: :: LIMFUNC3:25
theorem Th26: :: LIMFUNC3:26
theorem Th27: :: LIMFUNC3:27
for
b1 being
Real for
b2,
b3 being
PartFunc of
REAL ,
REAL st
b2 is_divergent_to+infty_in b1 & ( for
b4,
b5 being
Real st
b4 < b1 &
b1 < b5 holds
ex
b6,
b7 being
Real st
(
b4 < b6 &
b6 < b1 &
b6 in dom b3 &
b7 < b5 &
b1 < b7 &
b7 in dom b3 ) ) & ex
b4 being
Real st
( 0
< b4 &
(dom b3) /\ (].(b1 - b4),b1.[ \/ ].b1,(b1 + b4).[) c= (dom b2) /\ (].(b1 - b4),b1.[ \/ ].b1,(b1 + b4).[) & ( for
b5 being
Real st
b5 in (dom b3) /\ (].(b1 - b4),b1.[ \/ ].b1,(b1 + b4).[) holds
b2 . b5 <= b3 . b5 ) ) holds
b3 is_divergent_to+infty_in b1
theorem Th28: :: LIMFUNC3:28
for
b1 being
Real for
b2,
b3 being
PartFunc of
REAL ,
REAL st
b2 is_divergent_to-infty_in b1 & ( for
b4,
b5 being
Real st
b4 < b1 &
b1 < b5 holds
ex
b6,
b7 being
Real st
(
b4 < b6 &
b6 < b1 &
b6 in dom b3 &
b7 < b5 &
b1 < b7 &
b7 in dom b3 ) ) & ex
b4 being
Real st
( 0
< b4 &
(dom b3) /\ (].(b1 - b4),b1.[ \/ ].b1,(b1 + b4).[) c= (dom b2) /\ (].(b1 - b4),b1.[ \/ ].b1,(b1 + b4).[) & ( for
b5 being
Real st
b5 in (dom b3) /\ (].(b1 - b4),b1.[ \/ ].b1,(b1 + b4).[) holds
b3 . b5 <= b2 . b5 ) ) holds
b3 is_divergent_to-infty_in b1
theorem Th29: :: LIMFUNC3:29
theorem Th30: :: LIMFUNC3:30
:: deftheorem Def4 defines lim LIMFUNC3:def 4 :
theorem Th31: :: LIMFUNC3:31
canceled;
theorem Th32: :: LIMFUNC3:32
theorem Th33: :: LIMFUNC3:33
theorem Th34: :: LIMFUNC3:34
theorem Th35: :: LIMFUNC3:35
theorem Th36: :: LIMFUNC3:36
theorem Th37: :: LIMFUNC3:37
theorem Th38: :: LIMFUNC3:38
theorem Th39: :: LIMFUNC3:39
theorem Th40: :: LIMFUNC3:40
theorem Th41: :: LIMFUNC3:41
theorem Th42: :: LIMFUNC3:42
theorem Th43: :: LIMFUNC3:43
theorem Th44: :: LIMFUNC3:44
theorem Th45: :: LIMFUNC3:45
for
b1 being
Real for
b2,
b3,
b4 being
PartFunc of
REAL ,
REAL st
b2 is_convergent_in b1 &
b3 is_convergent_in b1 &
lim b2,
b1 = lim b3,
b1 & ( for
b5,
b6 being
Real st
b5 < b1 &
b1 < b6 holds
ex
b7,
b8 being
Real st
(
b5 < b7 &
b7 < b1 &
b7 in dom b4 &
b8 < b6 &
b1 < b8 &
b8 in dom b4 ) ) & ex
b5 being
Real st
( 0
< b5 & ( for
b6 being
Real st
b6 in (dom b4) /\ (].(b1 - b5),b1.[ \/ ].b1,(b1 + b5).[) holds
(
b2 . b6 <= b4 . b6 &
b4 . b6 <= b3 . b6 ) ) & ( (
(dom b2) /\ (].(b1 - b5),b1.[ \/ ].b1,(b1 + b5).[) c= (dom b3) /\ (].(b1 - b5),b1.[ \/ ].b1,(b1 + b5).[) &
(dom b4) /\ (].(b1 - b5),b1.[ \/ ].b1,(b1 + b5).[) c= (dom b2) /\ (].(b1 - b5),b1.[ \/ ].b1,(b1 + b5).[) ) or (
(dom b3) /\ (].(b1 - b5),b1.[ \/ ].b1,(b1 + b5).[) c= (dom b2) /\ (].(b1 - b5),b1.[ \/ ].b1,(b1 + b5).[) &
(dom b4) /\ (].(b1 - b5),b1.[ \/ ].b1,(b1 + b5).[) c= (dom b3) /\ (].(b1 - b5),b1.[ \/ ].b1,(b1 + b5).[) ) ) ) holds
(
b4 is_convergent_in b1 &
lim b4,
b1 = lim b2,
b1 )
theorem Th46: :: LIMFUNC3:46
for
b1 being
Real for
b2,
b3,
b4 being
PartFunc of
REAL ,
REAL st
b2 is_convergent_in b1 &
b3 is_convergent_in b1 &
lim b2,
b1 = lim b3,
b1 & ex
b5 being
Real st
( 0
< b5 &
].(b1 - b5),b1.[ \/ ].b1,(b1 + b5).[ c= ((dom b2) /\ (dom b3)) /\ (dom b4) & ( for
b6 being
Real st
b6 in ].(b1 - b5),b1.[ \/ ].b1,(b1 + b5).[ holds
(
b2 . b6 <= b4 . b6 &
b4 . b6 <= b3 . b6 ) ) ) holds
(
b4 is_convergent_in b1 &
lim b4,
b1 = lim b2,
b1 )
theorem Th47: :: LIMFUNC3:47
for
b1 being
Real for
b2,
b3 being
PartFunc of
REAL ,
REAL st
b2 is_convergent_in b1 &
b3 is_convergent_in b1 & ex
b4 being
Real st
( 0
< b4 & ( (
(dom b2) /\ (].(b1 - b4),b1.[ \/ ].b1,(b1 + b4).[) c= (dom b3) /\ (].(b1 - b4),b1.[ \/ ].b1,(b1 + b4).[) & ( for
b5 being
Real st
b5 in (dom b2) /\ (].(b1 - b4),b1.[ \/ ].b1,(b1 + b4).[) holds
b2 . b5 <= b3 . b5 ) ) or (
(dom b3) /\ (].(b1 - b4),b1.[ \/ ].b1,(b1 + b4).[) c= (dom b2) /\ (].(b1 - b4),b1.[ \/ ].b1,(b1 + b4).[) & ( for
b5 being
Real st
b5 in (dom b3) /\ (].(b1 - b4),b1.[ \/ ].b1,(b1 + b4).[) holds
b2 . b5 <= b3 . b5 ) ) ) ) holds
lim b2,
b1 <= lim b3,
b1
theorem Th48: :: LIMFUNC3:48
theorem Th49: :: LIMFUNC3:49
theorem Th50: :: LIMFUNC3:50
theorem Th51: :: LIMFUNC3:51
theorem Th52: :: LIMFUNC3:52