:: PASCH semantic presentation
definition
let c1 be
OAffinSpace;
attr a1 is
satisfying_Int_Par_Pasch means :: PASCH:def 1
for
b1,
b2,
b3,
b4,
b5 being
Element of
a1 st not
LIN b5,
b2,
b3 &
Mid b2,
b5,
b1 &
LIN b5,
b3,
b4 &
b2,
b3 '||' b4,
b1 holds
Mid b3,
b5,
b4;
end;
:: deftheorem Def1 defines satisfying_Int_Par_Pasch PASCH:def 1 :
for
b1 being
OAffinSpace holds
(
b1 is
satisfying_Int_Par_Pasch iff for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st not
LIN b6,
b3,
b4 &
Mid b3,
b6,
b2 &
LIN b6,
b4,
b5 &
b3,
b4 '||' b5,
b2 holds
Mid b4,
b6,
b5 );
definition
let c1 be
OAffinSpace;
attr a1 is
satisfying_Ext_Par_Pasch means :: PASCH:def 2
for
b1,
b2,
b3,
b4,
b5 being
Element of
a1 st
Mid b5,
b2,
b3 &
LIN b5,
b1,
b4 &
b1,
b2 '||' b3,
b4 & not
LIN b5,
b1,
b2 holds
Mid b5,
b1,
b4;
end;
:: deftheorem Def2 defines satisfying_Ext_Par_Pasch PASCH:def 2 :
for
b1 being
OAffinSpace holds
(
b1 is
satisfying_Ext_Par_Pasch iff for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st
Mid b6,
b3,
b4 &
LIN b6,
b2,
b5 &
b2,
b3 '||' b4,
b5 & not
LIN b6,
b2,
b3 holds
Mid b6,
b2,
b5 );
definition
let c1 be
OAffinSpace;
attr a1 is
satisfying_Gen_Par_Pasch means :: PASCH:def 3
for
b1,
b2,
b3,
b4,
b5,
b6 being
Element of
a1 st not
LIN b1,
b2,
b4 &
b1,
b4 '||' b2,
b5 &
b1,
b4 '||' b3,
b6 &
Mid b1,
b2,
b3 &
LIN b4,
b5,
b6 holds
Mid b4,
b5,
b6;
end;
:: deftheorem Def3 defines satisfying_Gen_Par_Pasch PASCH:def 3 :
for
b1 being
OAffinSpace holds
(
b1 is
satisfying_Gen_Par_Pasch iff for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st not
LIN b2,
b3,
b5 &
b2,
b5 '||' b3,
b6 &
b2,
b5 '||' b4,
b7 &
Mid b2,
b3,
b4 &
LIN b5,
b6,
b7 holds
Mid b5,
b6,
b7 );
definition
let c1 be
OAffinSpace;
attr a1 is
satisfying_Ext_Bet_Pasch means :: PASCH:def 4
for
b1,
b2,
b3,
b4,
b5,
b6 being
Element of
a1 st
Mid b1,
b2,
b4 &
Mid b2,
b5,
b3 & not
LIN b1,
b2,
b3 holds
ex
b7 being
Element of
a1 st
(
Mid b1,
b7,
b3 &
Mid b7,
b5,
b4 );
end;
:: deftheorem Def4 defines satisfying_Ext_Bet_Pasch PASCH:def 4 :
for
b1 being
OAffinSpace holds
(
b1 is
satisfying_Ext_Bet_Pasch iff for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st
Mid b2,
b3,
b5 &
Mid b3,
b6,
b4 & not
LIN b2,
b3,
b4 holds
ex
b8 being
Element of
b1 st
(
Mid b2,
b8,
b4 &
Mid b8,
b6,
b5 ) );
definition
let c1 be
OAffinSpace;
attr a1 is
satisfying_Int_Bet_Pasch means :: PASCH:def 5
for
b1,
b2,
b3,
b4,
b5,
b6 being
Element of
a1 st
Mid b1,
b2,
b4 &
Mid b1,
b5,
b3 & not
LIN b1,
b2,
b3 holds
ex
b7 being
Element of
a1 st
(
Mid b2,
b7,
b3 &
Mid b5,
b7,
b4 );
end;
:: deftheorem Def5 defines satisfying_Int_Bet_Pasch PASCH:def 5 :
for
b1 being
OAffinSpace holds
(
b1 is
satisfying_Int_Bet_Pasch iff for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st
Mid b2,
b3,
b5 &
Mid b2,
b6,
b4 & not
LIN b2,
b3,
b4 holds
ex
b8 being
Element of
b1 st
(
Mid b3,
b8,
b4 &
Mid b6,
b8,
b5 ) );
definition
let c1 be
OAffinSpace;
attr a1 is
Fanoian means :: PASCH:def 6
for
b1,
b2,
b3,
b4 being
Element of
a1 st
b1,
b2 // b3,
b4 &
b1,
b3 // b2,
b4 & not
LIN b1,
b2,
b3 holds
ex
b5 being
Element of
a1 st
(
Mid b1,
b5,
b4 &
Mid b2,
b5,
b3 );
end;
:: deftheorem Def6 defines Fanoian PASCH:def 6 :
for
b1 being
OAffinSpace holds
(
b1 is
Fanoian iff for
b2,
b3,
b4,
b5 being
Element of
b1 st
b2,
b3 // b4,
b5 &
b2,
b4 // b3,
b5 & not
LIN b2,
b3,
b4 holds
ex
b6 being
Element of
b1 st
(
Mid b2,
b6,
b5 &
Mid b3,
b6,
b4 ) );
theorem Th1: :: PASCH:1
canceled;
theorem Th2: :: PASCH:2
canceled;
theorem Th3: :: PASCH:3
canceled;
theorem Th4: :: PASCH:4
canceled;
theorem Th5: :: PASCH:5
canceled;
theorem Th6: :: PASCH:6
canceled;
theorem Th7: :: PASCH:7
theorem Th8: :: PASCH:8
theorem Th9: :: PASCH:9
theorem Th10: :: PASCH:10
canceled;
theorem Th11: :: PASCH:11
for
b1 being
OAffinSpace for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st not
LIN b2,
b3,
b4 &
LIN b2,
b4,
b5 &
LIN b2,
b3,
b6 &
LIN b2,
b3,
b7 &
b3,
b4 '||' b5,
b6 &
b3,
b4 '||' b5,
b7 holds
b6 = b7
theorem Th12: :: PASCH:12
for
b1 being
OAffinSpace for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st not
LIN b2,
b3,
b4 &
b2,
b3 '||' b4,
b5 &
b2,
b3 '||' b4,
b6 &
b2,
b4 '||' b3,
b5 &
b2,
b4 '||' b3,
b6 holds
b5 = b6
theorem Th13: :: PASCH:13
for
b1 being
OAffinSpace for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st not
LIN b2,
b3,
b4 &
Mid b3,
b2,
b5 &
LIN b2,
b4,
b6 &
b3,
b4 '||' b6,
b5 holds
Mid b4,
b2,
b6
theorem Th14: :: PASCH:14
theorem Th15: :: PASCH:15
for
b1 being
OAffinSpace for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st
Mid b2,
b3,
b4 &
LIN b2,
b5,
b6 &
b5,
b3 '||' b4,
b6 & not
LIN b2,
b5,
b3 holds
Mid b2,
b5,
b6
theorem Th16: :: PASCH:16
theorem Th17: :: PASCH:17
for
b1 being
OAffinSpace for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st not
LIN b2,
b3,
b4 &
b2,
b4 '||' b3,
b5 &
b2,
b4 '||' b6,
b7 &
Mid b2,
b3,
b6 &
LIN b4,
b5,
b7 holds
Mid b4,
b5,
b7
theorem Th18: :: PASCH:18
theorem Th19: :: PASCH:19
for
b1 being
OAffinSpace for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st not
LIN b2,
b3,
b4 &
b3,
b2 // b2,
b5 &
b4,
b2 // b2,
b6 &
b3,
b4 '||' b5,
b6 holds
b3,
b4 // b6,
b5
theorem Th20: :: PASCH:20
for
b1 being
OAffinSpace for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st not
LIN b2,
b3,
b4 &
b2,
b3 // b2,
b5 &
b2,
b4 // b2,
b6 &
b3,
b4 '||' b5,
b6 holds
b3,
b4 // b5,
b6
theorem Th21: :: PASCH:21
for
b1 being
OAffinSpace for
b2,
b3,
b4,
b5 being
Element of
b1 st not
LIN b2,
b3,
b4 &
b2,
b3 '||' b4,
b5 &
b2,
b4 '||' b3,
b5 holds
(
b2,
b3 // b4,
b5 &
b2,
b4 // b3,
b5 )
theorem Th22: :: PASCH:22
for
b1 being
OAffinSpace for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st
Mid b2,
b3,
b4 &
b3,
b5 // b4,
b6 &
b2,
b5 // b2,
b6 & not
LIN b2,
b6,
b4 &
b2 <> b3 holds
Mid b2,
b5,
b6
theorem Th23: :: PASCH:23
for
b1 being
OAffinSpace for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st
Mid b2,
b3,
b4 &
b5,
b3 // b6,
b4 &
b2,
b5 // b2,
b6 & not
LIN b2,
b4,
b6 &
b2 <> b5 holds
Mid b2,
b5,
b6
theorem Th24: :: PASCH:24
for
b1 being
OAffinSpace for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st not
LIN b2,
b3,
b4 &
b2,
b4 // b2,
b5 &
b4,
b3 // b5,
b6 &
LIN b3,
b2,
b6 &
b2 <> b6 holds
not
Mid b3,
b2,
b6
theorem Th25: :: PASCH:25
theorem Th26: :: PASCH:26
theorem Th27: :: PASCH:27
theorem Th28: :: PASCH:28
for
b1 being
OAffinSpace for
b2,
b3,
b4,
b5 being
Element of
b1 st not
LIN b2,
b3,
b4 &
Mid b2,
b5,
b4 holds
ex
b6 being
Element of
b1 st
(
Mid b2,
b6,
b3 &
b3,
b4 // b6,
b5 )
theorem Th29: :: PASCH:29
theorem Th30: :: PASCH:30
for
b1 being
OAffinSpace for
b2,
b3,
b4,
b5 being
Element of
b1 st
b2,
b3 // b4,
b5 & not
LIN b2,
b3,
b4 holds
ex
b6 being
Element of
b1 st
(
Mid b2,
b6,
b5 &
Mid b3,
b6,
b4 )
theorem Th31: :: PASCH:31
canceled;
theorem Th32: :: PASCH:32
theorem Th33: :: PASCH:33
for
b1 being
OAffinSpace for
b2,
b3,
b4,
b5 being
Element of
b1 st
b2,
b3 '||' b4,
b5 &
b2,
b4 '||' b3,
b5 & not
LIN b2,
b3,
b4 holds
ex
b6 being
Element of
b1 st
(
LIN b6,
b2,
b5 &
LIN b6,
b3,
b4 )
theorem Th34: :: PASCH:34
for
b1 being
OAffinSpace for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st
b2,
b3 '||' b4,
b5 &
b2,
b4 '||' b3,
b5 & not
LIN b2,
b3,
b4 &
LIN b6,
b2,
b5 &
LIN b6,
b3,
b4 holds
not
LIN b6,
b2,
b3
theorem Th35: :: PASCH:35
for
b1 being
OAffinSpace for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st
Mid b2,
b3,
b4 &
Mid b3,
b5,
b6 & not
LIN b2,
b3,
b6 holds
ex
b7 being
Element of
b1 st
(
Mid b2,
b7,
b6 &
Mid b7,
b5,
b4 )
theorem Th36: :: PASCH:36
theorem Th37: :: PASCH:37
for
b1 being
OAffinSpace for
b2,
b3,
b4,
b5,
b6 being
Element of
b1 st
Mid b2,
b3,
b4 &
Mid b2,
b5,
b6 & not
LIN b2,
b3,
b6 holds
ex
b7 being
Element of
b1 st
(
Mid b3,
b7,
b6 &
Mid b5,
b7,
b4 )
theorem Th38: :: PASCH:38
theorem Th39: :: PASCH:39
for
b1 being
OAffinSpace for
b2,
b3,
b4,
b5,
b6,
b7 being
Element of
b1 st
Mid b2,
b3,
b4 &
b2,
b3 // b5,
b6 & not
LIN b2,
b3,
b5 &
LIN b5,
b6,
b7 &
b2,
b5 // b3,
b6 &
b2,
b5 // b4,
b7 holds
Mid b5,
b6,
b7