:: POLYEQ_4 semantic presentation
theorem Th1: :: POLYEQ_4:1
theorem Th2: :: POLYEQ_4:2
theorem Th3: :: POLYEQ_4:3
for
b1,
b2,
b3 being
Real st
b1 <> 0 &
b2 / b1 < 0 & not (
((- b3) + (sqrt (delta b1,b3,b2))) / (2 * b1) > 0 &
((- b3) - (sqrt (delta b1,b3,b2))) / (2 * b1) < 0 ) holds
(
((- b3) + (sqrt (delta b1,b3,b2))) / (2 * b1) < 0 &
((- b3) - (sqrt (delta b1,b3,b2))) / (2 * b1) > 0 )
theorem Th4: :: POLYEQ_4:4
for
b1,
b2 being
Real for
b3 being
Nat st
b1 > 0 & ex
b4 being
Nat st
(
b3 = 2
* b4 &
b4 >= 1 ) &
b2 |^ b3 = b1 & not
b2 = b3 -root b1 holds
b2 = - (b3 -root b1)
theorem Th5: :: POLYEQ_4:5
for
b1,
b2,
b3 being
Real st
b1 <> 0 &
Poly2 b1,
b2,0,
b3 = 0 & not
b3 = 0 holds
b3 = - (b2 / b1)
theorem Th6: :: POLYEQ_4:6
for
b1,
b2 being
Real st
b1 <> 0 &
Poly2 b1,0,0,
b2 = 0 holds
b2 = 0
theorem Th7: :: POLYEQ_4:7
for
b1,
b2,
b3,
b4 being
Real for
b5 being
Nat st
b1 <> 0 & ex
b6 being
Nat st
b5 = (2 * b6) + 1 &
delta b1,
b2,
b3 >= 0 &
Poly2 b1,
b2,
b3,
(b4 |^ b5) = 0 & not
b4 = b5 -root (((- b2) + (sqrt (delta b1,b2,b3))) / (2 * b1)) holds
b4 = b5 -root (((- b2) - (sqrt (delta b1,b2,b3))) / (2 * b1))
theorem Th8: :: POLYEQ_4:8
for
b1,
b2,
b3,
b4 being
Real for
b5 being
Nat st
b1 <> 0 &
b2 / b1 < 0 &
b3 / b1 > 0 & ex
b6 being
Nat st
(
b5 = 2
* b6 &
b6 >= 1 ) &
delta b1,
b2,
b3 >= 0 &
Poly2 b1,
b2,
b3,
(b4 |^ b5) = 0 & not
b4 = b5 -root (((- b2) + (sqrt (delta b1,b2,b3))) / (2 * b1)) & not
b4 = - (b5 -root (((- b2) + (sqrt (delta b1,b2,b3))) / (2 * b1))) & not
b4 = b5 -root (((- b2) - (sqrt (delta b1,b2,b3))) / (2 * b1)) holds
b4 = - (b5 -root (((- b2) - (sqrt (delta b1,b2,b3))) / (2 * b1)))
theorem Th9: :: POLYEQ_4:9
for
b1,
b2,
b3 being
Real for
b4 being
Nat st
b1 <> 0 & ex
b5 being
Nat st
b4 = (2 * b5) + 1 &
Poly2 b1,
b2,0,
(b3 |^ b4) = 0 & not
b3 = 0 holds
b3 = b4 -root (- (b2 / b1))
theorem Th10: :: POLYEQ_4:10
for
b1,
b2,
b3 being
Real for
b4 being
Nat st
b1 <> 0 &
b2 / b1 < 0 & ex
b5 being
Nat st
(
b4 = 2
* b5 &
b5 >= 1 ) &
Poly2 b1,
b2,0,
(b3 |^ b4) = 0 & not
b3 = 0 & not
b3 = b4 -root (- (b2 / b1)) holds
b3 = - (b4 -root (- (b2 / b1)))
theorem Th11: :: POLYEQ_4:11
for
b1,
b2 being
Real holds
(
(b1 |^ 3) + (b2 |^ 3) = (b1 + b2) * (((b1 ^2 ) - (b1 * b2)) + (b2 ^2 )) &
(b1 |^ 5) + (b2 |^ 5) = (b1 + b2) * (((((b1 |^ 4) - ((b1 |^ 3) * b2)) + ((b1 |^ 2) * (b2 |^ 2))) - (b1 * (b2 |^ 3))) + (b2 |^ 4)) )
theorem Th12: :: POLYEQ_4:12
for
b1,
b2,
b3 being
Real st
b1 <> 0 &
((b2 ^2 ) - ((2 * b1) * b2)) - (3 * (b1 ^2 )) >= 0 &
Poly3 b1,
b2,
b2,
b1,
b3 = 0 & not
b3 = - 1 & not
b3 = ((b1 - b2) + (sqrt (((b2 ^2 ) - ((2 * b1) * b2)) - (3 * (b1 ^2 ))))) / (2 * b1) holds
b3 = ((b1 - b2) - (sqrt (((b2 ^2 ) - ((2 * b1) * b2)) - (3 * (b1 ^2 ))))) / (2 * b1)
definition
let c1,
c2,
c3,
c4,
c5,
c6,
c7 be
Real;
func Poly5 c1,
c2,
c3,
c4,
c5,
c6,
c7 -> set equals :: POLYEQ_4:def 1
(((((a1 * (a7 |^ 5)) + (a2 * (a7 |^ 4))) + (a3 * (a7 |^ 3))) + (a4 * (a7 ^2 ))) + (a5 * a7)) + a6;
coherence
(((((c1 * (c7 |^ 5)) + (c2 * (c7 |^ 4))) + (c3 * (c7 |^ 3))) + (c4 * (c7 ^2 ))) + (c5 * c7)) + c6 is set
;
end;
:: deftheorem Def1 defines Poly5 POLYEQ_4:def 1 :
for
b1,
b2,
b3,
b4,
b5,
b6,
b7 being
Real holds
Poly5 b1,
b2,
b3,
b4,
b5,
b6,
b7 = (((((b1 * (b7 |^ 5)) + (b2 * (b7 |^ 4))) + (b3 * (b7 |^ 3))) + (b4 * (b7 ^2 ))) + (b5 * b7)) + b6;
theorem Th13: :: POLYEQ_4:13
for
b1,
b2,
b3,
b4 being
Real st
b1 <> 0 &
(((b2 ^2 ) + ((2 * b1) * b2)) + (5 * (b1 ^2 ))) - ((4 * b1) * b3) > 0 &
Poly5 b1,
b2,
b3,
b3,
b2,
b1,
b4 = 0 holds
for
b5,
b6 being
Real st
b5 = ((b1 - b2) + (sqrt ((((b2 ^2 ) + ((2 * b1) * b2)) + (5 * (b1 ^2 ))) - ((4 * b1) * b3)))) / (2 * b1) &
b6 = ((b1 - b2) - (sqrt ((((b2 ^2 ) + ((2 * b1) * b2)) + (5 * (b1 ^2 ))) - ((4 * b1) * b3)))) / (2 * b1) & not
b4 = - 1 & not
b4 = (b5 + (sqrt (delta 1,(- b5),1))) / 2 & not
b4 = (b6 + (sqrt (delta 1,(- b6),1))) / 2 & not
b4 = (b5 - (sqrt (delta 1,(- b5),1))) / 2 holds
b4 = (b6 - (sqrt (delta 1,(- b6),1))) / 2
theorem Th14: :: POLYEQ_4:14
for
b1,
b2,
b3,
b4 being
Real st
b1 + b2 = b3 &
b1 * b2 = b4 &
(b3 ^2 ) - (4 * b4) >= 0 & not (
b1 = (b3 + (sqrt ((b3 ^2 ) - (4 * b4)))) / 2 &
b2 = (b3 - (sqrt ((b3 ^2 ) - (4 * b4)))) / 2 ) holds
(
b1 = (b3 - (sqrt ((b3 ^2 ) - (4 * b4)))) / 2 &
b2 = (b3 + (sqrt ((b3 ^2 ) - (4 * b4)))) / 2 )
theorem Th15: :: POLYEQ_4:15
theorem Th16: :: POLYEQ_4:16
theorem Th17: :: POLYEQ_4:17
canceled;
theorem Th18: :: POLYEQ_4:18
for
b1,
b2,
b3,
b4 being
Real for
b5 being
Nat st
(b1 |^ b5) + (b2 |^ b5) = b3 &
(b1 |^ b5) - (b2 |^ b5) = b4 & ex
b6 being
Nat st
(
b5 = 2
* b6 &
b6 >= 1 ) &
b3 > 0 &
b3 + b4 > 0 &
b3 - b4 > 0 & not (
b1 = b5 -root ((b3 + b4) / 2) &
b2 = b5 -root ((b3 - b4) / 2) ) & not (
b1 = b5 -root ((b3 + b4) / 2) &
b2 = - (b5 -root ((b3 - b4) / 2)) ) & not (
b1 = - (b5 -root ((b3 + b4) / 2)) &
b2 = b5 -root ((b3 - b4) / 2) ) holds
(
b1 = - (b5 -root ((b3 + b4) / 2)) &
b2 = - (b5 -root ((b3 - b4) / 2)) )
theorem Th19: :: POLYEQ_4:19
for
b1,
b2,
b3,
b4,
b5 being
Real for
b6 being
Nat st
(b1 * (b2 |^ b6)) + (b3 * (b4 |^ b6)) = b5 &
b2 * b4 = 0 & ex
b7 being
Nat st
b6 = (2 * b7) + 1 &
b1 * b3 <> 0 & not (
b2 = 0 &
b4 = b6 -root (b5 / b3) ) holds
(
b2 = b6 -root (b5 / b1) &
b4 = 0 )
theorem Th20: :: POLYEQ_4:20
for
b1,
b2,
b3,
b4,
b5 being
Real for
b6 being
Nat st
(b1 * (b2 |^ b6)) + (b3 * (b4 |^ b6)) = b5 &
b2 * b4 = 0 & ex
b7 being
Nat st
(
b6 = 2
* b7 &
b7 >= 1 ) &
b5 / b3 > 0 &
b5 / b1 > 0 &
b1 * b3 <> 0 & not (
b2 = 0 &
b4 = b6 -root (b5 / b3) ) & not (
b2 = 0 &
b4 = - (b6 -root (b5 / b3)) ) & not (
b2 = b6 -root (b5 / b1) &
b4 = 0 ) holds
(
b2 = - (b6 -root (b5 / b1)) &
b4 = 0 )
theorem Th21: :: POLYEQ_4:21
for
b1,
b2,
b3,
b4,
b5 being
Real for
b6 being
Nat st
b1 * (b2 |^ b6) = b3 &
b2 * b4 = b5 & ex
b7 being
Nat st
b6 = (2 * b7) + 1 &
b3 * b1 <> 0 holds
(
b2 = b6 -root (b3 / b1) &
b4 = b5 * (b6 -root (b1 / b3)) )
theorem Th22: :: POLYEQ_4:22
for
b1,
b2,
b3,
b4,
b5 being
Real for
b6 being
Nat st
b1 * (b2 |^ b6) = b3 &
b2 * b4 = b5 & ex
b7 being
Nat st
(
b6 = 2
* b7 &
b7 >= 1 ) &
b3 / b1 > 0 &
b1 <> 0 & not (
b2 = b6 -root (b3 / b1) &
b4 = b5 * (b6 -root (b1 / b3)) ) holds
(
b2 = - (b6 -root (b3 / b1)) &
b4 = - (b5 * (b6 -root (b1 / b3))) )
theorem Th23: :: POLYEQ_4:23
canceled;
theorem Th24: :: POLYEQ_4:24
theorem Th25: :: POLYEQ_4:25
theorem Th26: :: POLYEQ_4:26
canceled;
theorem Th27: :: POLYEQ_4:27
for
b1,
b2,
b3 being
Real st
b1 > 0 &
b1 <> 1 &
b3 > 0 &
log b1,
b3 = 0 holds
b3 = 1
theorem Th28: :: POLYEQ_4:28
for
b1,
b2,
b3 being
Real st
b1 > 0 &
b1 <> 1 &
b3 > 0 &
log b1,
b3 = 1 holds
b3 = b1