:: POLYEQ_4 semantic presentation

theorem Th1: :: POLYEQ_4:1
for b1, b2, b3 being Real st b1 <> 0 & b2 / b1 < 0 & b3 / b1 > 0 & delta b1,b2,b3 >= 0 holds
( ((- b2) + (sqrt (delta b1,b2,b3))) / (2 * b1) > 0 & ((- b2) - (sqrt (delta b1,b2,b3))) / (2 * b1) > 0 )
proof end;

theorem Th2: :: POLYEQ_4:2
for b1, b2, b3 being Real st b1 <> 0 & b2 / b1 > 0 & b3 / b1 > 0 & delta b1,b2,b3 >= 0 holds
( ((- b2) + (sqrt (delta b1,b2,b3))) / (2 * b1) < 0 & ((- b2) - (sqrt (delta b1,b2,b3))) / (2 * b1) < 0 )
proof end;

theorem Th3: :: POLYEQ_4:3
for b1, b2, b3 being Real st b1 <> 0 & b2 / b1 < 0 & not ( ((- b3) + (sqrt (delta b1,b3,b2))) / (2 * b1) > 0 & ((- b3) - (sqrt (delta b1,b3,b2))) / (2 * b1) < 0 ) holds
( ((- b3) + (sqrt (delta b1,b3,b2))) / (2 * b1) < 0 & ((- b3) - (sqrt (delta b1,b3,b2))) / (2 * b1) > 0 )
proof end;

theorem Th4: :: POLYEQ_4:4
for b1, b2 being Real
for b3 being Nat st b1 > 0 & ex b4 being Nat st
( b3 = 2 * b4 & b4 >= 1 ) & b2 |^ b3 = b1 & not b2 = b3 -root b1 holds
b2 = - (b3 -root b1)
proof end;

theorem Th5: :: POLYEQ_4:5
for b1, b2, b3 being Real st b1 <> 0 & Poly2 b1,b2,0,b3 = 0 & not b3 = 0 holds
b3 = - (b2 / b1)
proof end;

theorem Th6: :: POLYEQ_4:6
for b1, b2 being Real st b1 <> 0 & Poly2 b1,0,0,b2 = 0 holds
b2 = 0
proof end;

theorem Th7: :: POLYEQ_4:7
for b1, b2, b3, b4 being Real
for b5 being Nat st b1 <> 0 & ex b6 being Nat st b5 = (2 * b6) + 1 & delta b1,b2,b3 >= 0 & Poly2 b1,b2,b3,(b4 |^ b5) = 0 & not b4 = b5 -root (((- b2) + (sqrt (delta b1,b2,b3))) / (2 * b1)) holds
b4 = b5 -root (((- b2) - (sqrt (delta b1,b2,b3))) / (2 * b1))
proof end;

theorem Th8: :: POLYEQ_4:8
for b1, b2, b3, b4 being Real
for b5 being Nat st b1 <> 0 & b2 / b1 < 0 & b3 / b1 > 0 & ex b6 being Nat st
( b5 = 2 * b6 & b6 >= 1 ) & delta b1,b2,b3 >= 0 & Poly2 b1,b2,b3,(b4 |^ b5) = 0 & not b4 = b5 -root (((- b2) + (sqrt (delta b1,b2,b3))) / (2 * b1)) & not b4 = - (b5 -root (((- b2) + (sqrt (delta b1,b2,b3))) / (2 * b1))) & not b4 = b5 -root (((- b2) - (sqrt (delta b1,b2,b3))) / (2 * b1)) holds
b4 = - (b5 -root (((- b2) - (sqrt (delta b1,b2,b3))) / (2 * b1)))
proof end;

theorem Th9: :: POLYEQ_4:9
for b1, b2, b3 being Real
for b4 being Nat st b1 <> 0 & ex b5 being Nat st b4 = (2 * b5) + 1 & Poly2 b1,b2,0,(b3 |^ b4) = 0 & not b3 = 0 holds
b3 = b4 -root (- (b2 / b1))
proof end;

theorem Th10: :: POLYEQ_4:10
for b1, b2, b3 being Real
for b4 being Nat st b1 <> 0 & b2 / b1 < 0 & ex b5 being Nat st
( b4 = 2 * b5 & b5 >= 1 ) & Poly2 b1,b2,0,(b3 |^ b4) = 0 & not b3 = 0 & not b3 = b4 -root (- (b2 / b1)) holds
b3 = - (b4 -root (- (b2 / b1)))
proof end;

theorem Th11: :: POLYEQ_4:11
for b1, b2 being Real holds
( (b1 |^ 3) + (b2 |^ 3) = (b1 + b2) * (((b1 ^2 ) - (b1 * b2)) + (b2 ^2 )) & (b1 |^ 5) + (b2 |^ 5) = (b1 + b2) * (((((b1 |^ 4) - ((b1 |^ 3) * b2)) + ((b1 |^ 2) * (b2 |^ 2))) - (b1 * (b2 |^ 3))) + (b2 |^ 4)) )
proof end;

theorem Th12: :: POLYEQ_4:12
for b1, b2, b3 being Real st b1 <> 0 & ((b2 ^2 ) - ((2 * b1) * b2)) - (3 * (b1 ^2 )) >= 0 & Poly3 b1,b2,b2,b1,b3 = 0 & not b3 = - 1 & not b3 = ((b1 - b2) + (sqrt (((b2 ^2 ) - ((2 * b1) * b2)) - (3 * (b1 ^2 ))))) / (2 * b1) holds
b3 = ((b1 - b2) - (sqrt (((b2 ^2 ) - ((2 * b1) * b2)) - (3 * (b1 ^2 ))))) / (2 * b1)
proof end;

definition
let c1, c2, c3, c4, c5, c6, c7 be Real;
func Poly5 c1,c2,c3,c4,c5,c6,c7 -> set equals :: POLYEQ_4:def 1
(((((a1 * (a7 |^ 5)) + (a2 * (a7 |^ 4))) + (a3 * (a7 |^ 3))) + (a4 * (a7 ^2 ))) + (a5 * a7)) + a6;
coherence
(((((c1 * (c7 |^ 5)) + (c2 * (c7 |^ 4))) + (c3 * (c7 |^ 3))) + (c4 * (c7 ^2 ))) + (c5 * c7)) + c6 is set
;
end;

:: deftheorem Def1 defines Poly5 POLYEQ_4:def 1 :
for b1, b2, b3, b4, b5, b6, b7 being Real holds Poly5 b1,b2,b3,b4,b5,b6,b7 = (((((b1 * (b7 |^ 5)) + (b2 * (b7 |^ 4))) + (b3 * (b7 |^ 3))) + (b4 * (b7 ^2 ))) + (b5 * b7)) + b6;

theorem Th13: :: POLYEQ_4:13
for b1, b2, b3, b4 being Real st b1 <> 0 & (((b2 ^2 ) + ((2 * b1) * b2)) + (5 * (b1 ^2 ))) - ((4 * b1) * b3) > 0 & Poly5 b1,b2,b3,b3,b2,b1,b4 = 0 holds
for b5, b6 being Real st b5 = ((b1 - b2) + (sqrt ((((b2 ^2 ) + ((2 * b1) * b2)) + (5 * (b1 ^2 ))) - ((4 * b1) * b3)))) / (2 * b1) & b6 = ((b1 - b2) - (sqrt ((((b2 ^2 ) + ((2 * b1) * b2)) + (5 * (b1 ^2 ))) - ((4 * b1) * b3)))) / (2 * b1) & not b4 = - 1 & not b4 = (b5 + (sqrt (delta 1,(- b5),1))) / 2 & not b4 = (b6 + (sqrt (delta 1,(- b6),1))) / 2 & not b4 = (b5 - (sqrt (delta 1,(- b5),1))) / 2 holds
b4 = (b6 - (sqrt (delta 1,(- b6),1))) / 2
proof end;

theorem Th14: :: POLYEQ_4:14
for b1, b2, b3, b4 being Real st b1 + b2 = b3 & b1 * b2 = b4 & (b3 ^2 ) - (4 * b4) >= 0 & not ( b1 = (b3 + (sqrt ((b3 ^2 ) - (4 * b4)))) / 2 & b2 = (b3 - (sqrt ((b3 ^2 ) - (4 * b4)))) / 2 ) holds
( b1 = (b3 - (sqrt ((b3 ^2 ) - (4 * b4)))) / 2 & b2 = (b3 + (sqrt ((b3 ^2 ) - (4 * b4)))) / 2 )
proof end;

theorem Th15: :: POLYEQ_4:15
for b1, b2, b3, b4 being Real
for b5 being Nat st (b1 |^ b5) + (b2 |^ b5) = b3 & (b1 |^ b5) * (b2 |^ b5) = b4 & (b3 ^2 ) - (4 * b4) >= 0 & ex b6 being Nat st b5 = (2 * b6) + 1 & not ( b1 = b5 -root ((b3 + (sqrt ((b3 ^2 ) - (4 * b4)))) / 2) & b2 = b5 -root ((b3 - (sqrt ((b3 ^2 ) - (4 * b4)))) / 2) ) holds
( b1 = b5 -root ((b3 - (sqrt ((b3 ^2 ) - (4 * b4)))) / 2) & b2 = b5 -root ((b3 + (sqrt ((b3 ^2 ) - (4 * b4)))) / 2) )
proof end;

theorem Th16: :: POLYEQ_4:16
for b1, b2, b3, b4 being Real
for b5 being Nat st (b1 |^ b5) + (b2 |^ b5) = b3 & (b1 |^ b5) * (b2 |^ b5) = b4 & (b3 ^2 ) - (4 * b4) >= 0 & b3 > 0 & b4 > 0 & ex b6 being Nat st
( b5 = 2 * b6 & b6 >= 1 ) & not ( b1 = b5 -root ((b3 + (sqrt ((b3 ^2 ) - (4 * b4)))) / 2) & b2 = b5 -root ((b3 - (sqrt ((b3 ^2 ) - (4 * b4)))) / 2) ) & not ( b1 = - (b5 -root ((b3 + (sqrt ((b3 ^2 ) - (4 * b4)))) / 2)) & b2 = b5 -root ((b3 - (sqrt ((b3 ^2 ) - (4 * b4)))) / 2) ) & not ( b1 = b5 -root ((b3 + (sqrt ((b3 ^2 ) - (4 * b4)))) / 2) & b2 = - (b5 -root ((b3 - (sqrt ((b3 ^2 ) - (4 * b4)))) / 2)) ) & not ( b1 = - (b5 -root ((b3 + (sqrt ((b3 ^2 ) - (4 * b4)))) / 2)) & b2 = - (b5 -root ((b3 - (sqrt ((b3 ^2 ) - (4 * b4)))) / 2)) ) & not ( b1 = b5 -root ((b3 - (sqrt ((b3 ^2 ) - (4 * b4)))) / 2) & b2 = b5 -root ((b3 + (sqrt ((b3 ^2 ) - (4 * b4)))) / 2) ) & not ( b1 = - (b5 -root ((b3 - (sqrt ((b3 ^2 ) - (4 * b4)))) / 2)) & b2 = b5 -root ((b3 + (sqrt ((b3 ^2 ) - (4 * b4)))) / 2) ) & not ( b1 = b5 -root ((b3 - (sqrt ((b3 ^2 ) - (4 * b4)))) / 2) & b2 = - (b5 -root ((b3 + (sqrt ((b3 ^2 ) - (4 * b4)))) / 2)) ) holds
( b1 = - (b5 -root ((b3 - (sqrt ((b3 ^2 ) - (4 * b4)))) / 2)) & b2 = - (b5 -root ((b3 + (sqrt ((b3 ^2 ) - (4 * b4)))) / 2)) )
proof end;

theorem Th17: :: POLYEQ_4:17
canceled;

theorem Th18: :: POLYEQ_4:18
for b1, b2, b3, b4 being Real
for b5 being Nat st (b1 |^ b5) + (b2 |^ b5) = b3 & (b1 |^ b5) - (b2 |^ b5) = b4 & ex b6 being Nat st
( b5 = 2 * b6 & b6 >= 1 ) & b3 > 0 & b3 + b4 > 0 & b3 - b4 > 0 & not ( b1 = b5 -root ((b3 + b4) / 2) & b2 = b5 -root ((b3 - b4) / 2) ) & not ( b1 = b5 -root ((b3 + b4) / 2) & b2 = - (b5 -root ((b3 - b4) / 2)) ) & not ( b1 = - (b5 -root ((b3 + b4) / 2)) & b2 = b5 -root ((b3 - b4) / 2) ) holds
( b1 = - (b5 -root ((b3 + b4) / 2)) & b2 = - (b5 -root ((b3 - b4) / 2)) )
proof end;

theorem Th19: :: POLYEQ_4:19
for b1, b2, b3, b4, b5 being Real
for b6 being Nat st (b1 * (b2 |^ b6)) + (b3 * (b4 |^ b6)) = b5 & b2 * b4 = 0 & ex b7 being Nat st b6 = (2 * b7) + 1 & b1 * b3 <> 0 & not ( b2 = 0 & b4 = b6 -root (b5 / b3) ) holds
( b2 = b6 -root (b5 / b1) & b4 = 0 )
proof end;

theorem Th20: :: POLYEQ_4:20
for b1, b2, b3, b4, b5 being Real
for b6 being Nat st (b1 * (b2 |^ b6)) + (b3 * (b4 |^ b6)) = b5 & b2 * b4 = 0 & ex b7 being Nat st
( b6 = 2 * b7 & b7 >= 1 ) & b5 / b3 > 0 & b5 / b1 > 0 & b1 * b3 <> 0 & not ( b2 = 0 & b4 = b6 -root (b5 / b3) ) & not ( b2 = 0 & b4 = - (b6 -root (b5 / b3)) ) & not ( b2 = b6 -root (b5 / b1) & b4 = 0 ) holds
( b2 = - (b6 -root (b5 / b1)) & b4 = 0 )
proof end;

theorem Th21: :: POLYEQ_4:21
for b1, b2, b3, b4, b5 being Real
for b6 being Nat st b1 * (b2 |^ b6) = b3 & b2 * b4 = b5 & ex b7 being Nat st b6 = (2 * b7) + 1 & b3 * b1 <> 0 holds
( b2 = b6 -root (b3 / b1) & b4 = b5 * (b6 -root (b1 / b3)) )
proof end;

theorem Th22: :: POLYEQ_4:22
for b1, b2, b3, b4, b5 being Real
for b6 being Nat st b1 * (b2 |^ b6) = b3 & b2 * b4 = b5 & ex b7 being Nat st
( b6 = 2 * b7 & b7 >= 1 ) & b3 / b1 > 0 & b1 <> 0 & not ( b2 = b6 -root (b3 / b1) & b4 = b5 * (b6 -root (b1 / b3)) ) holds
( b2 = - (b6 -root (b3 / b1)) & b4 = - (b5 * (b6 -root (b1 / b3))) )
proof end;

theorem Th23: :: POLYEQ_4:23
canceled;

theorem Th24: :: POLYEQ_4:24
for b1, b2 being Real st b1 > 0 & b1 <> 1 & b1 to_power b2 = 1 holds
b2 = 0
proof end;

theorem Th25: :: POLYEQ_4:25
for b1, b2 being Real st b1 > 0 & b1 <> 1 & b1 to_power b2 = b1 holds
b2 = 1
proof end;

theorem Th26: :: POLYEQ_4:26
canceled;

theorem Th27: :: POLYEQ_4:27
for b1, b2, b3 being Real st b1 > 0 & b1 <> 1 & b3 > 0 & log b1,b3 = 0 holds
b3 = 1
proof end;

theorem Th28: :: POLYEQ_4:28
for b1, b2, b3 being Real st b1 > 0 & b1 <> 1 & b3 > 0 & log b1,b3 = 1 holds
b3 = b1
proof end;