:: REAL_LAT semantic presentation
definition
func minreal -> BinOp of
REAL means :
Def1:
:: REAL_LAT:def 1
for
b1,
b2 being
Real holds
a1 . b1,
b2 = min b1,
b2;
existence
ex b1 being BinOp of REAL st
for b2, b3 being Real holds b1 . b2,b3 = min b2,b3
uniqueness
for b1, b2 being BinOp of REAL st ( for b3, b4 being Real holds b1 . b3,b4 = min b3,b4 ) & ( for b3, b4 being Real holds b2 . b3,b4 = min b3,b4 ) holds
b1 = b2
func maxreal -> BinOp of
REAL means :
Def2:
:: REAL_LAT:def 2
for
b1,
b2 being
Real holds
a1 . b1,
b2 = max b1,
b2;
existence
ex b1 being BinOp of REAL st
for b2, b3 being Real holds b1 . b2,b3 = max b2,b3
uniqueness
for b1, b2 being BinOp of REAL st ( for b3, b4 being Real holds b1 . b3,b4 = max b3,b4 ) & ( for b3, b4 being Real holds b2 . b3,b4 = max b3,b4 ) holds
b1 = b2
end;
:: deftheorem Def1 defines minreal REAL_LAT:def 1 :
:: deftheorem Def2 defines maxreal REAL_LAT:def 2 :
:: deftheorem Def3 REAL_LAT:def 3 :
canceled;
:: deftheorem Def4 defines Real_Lattice REAL_LAT:def 4 :
Lemma3:
for b1, b2 being Element of Real_Lattice holds b1 "\/" b2 = b2 "\/" b1
Lemma4:
for b1, b2, b3 being Element of Real_Lattice holds b1 "\/" (b2 "\/" b3) = (b1 "\/" b2) "\/" b3
Lemma5:
for b1, b2 being Element of Real_Lattice holds (b1 "/\" b2) "\/" b2 = b2
Lemma6:
for b1, b2 being Element of Real_Lattice holds b1 "/\" b2 = b2 "/\" b1
Lemma7:
for b1, b2, b3 being Element of Real_Lattice holds b1 "/\" (b2 "/\" b3) = (b1 "/\" b2) "/\" b3
Lemma8:
for b1, b2 being Element of Real_Lattice holds b1 "/\" (b1 "\/" b2) = b1
Lemma9:
for b1, b2, b3 being Element of Real_Lattice holds b1 "/\" (b2 "\/" b3) = (b1 "/\" b2) "\/" (b1 "/\" b3)
theorem Th1: :: REAL_LAT:1
canceled;
theorem Th2: :: REAL_LAT:2
canceled;
theorem Th3: :: REAL_LAT:3
canceled;
theorem Th4: :: REAL_LAT:4
canceled;
theorem Th5: :: REAL_LAT:5
canceled;
theorem Th6: :: REAL_LAT:6
canceled;
theorem Th7: :: REAL_LAT:7
canceled;
theorem Th8: :: REAL_LAT:8
theorem Th9: :: REAL_LAT:9
theorem Th10: :: REAL_LAT:10
for
b1,
b2,
b3 being
Element of
Real_Lattice holds
(
maxreal . b1,
(maxreal . b2,b3) = maxreal . (maxreal . b2,b3),
b1 &
maxreal . b1,
(maxreal . b2,b3) = maxreal . (maxreal . b1,b2),
b3 &
maxreal . b1,
(maxreal . b2,b3) = maxreal . (maxreal . b2,b1),
b3 &
maxreal . b1,
(maxreal . b2,b3) = maxreal . (maxreal . b3,b1),
b2 &
maxreal . b1,
(maxreal . b2,b3) = maxreal . (maxreal . b3,b2),
b1 &
maxreal . b1,
(maxreal . b2,b3) = maxreal . (maxreal . b1,b3),
b2 )
theorem Th11: :: REAL_LAT:11
for
b1,
b2,
b3 being
Element of
Real_Lattice holds
(
minreal . b1,
(minreal . b2,b3) = minreal . (minreal . b2,b3),
b1 &
minreal . b1,
(minreal . b2,b3) = minreal . (minreal . b1,b2),
b3 &
minreal . b1,
(minreal . b2,b3) = minreal . (minreal . b2,b1),
b3 &
minreal . b1,
(minreal . b2,b3) = minreal . (minreal . b3,b1),
b2 &
minreal . b1,
(minreal . b2,b3) = minreal . (minreal . b3,b2),
b1 &
minreal . b1,
(minreal . b2,b3) = minreal . (minreal . b1,b3),
b2 )
theorem Th12: :: REAL_LAT:12
theorem Th13: :: REAL_LAT:13
theorem Th14: :: REAL_LAT:14
definition
let c1 be non
empty set ;
func maxfuncreal c1 -> BinOp of
Funcs a1,
REAL means :
Def5:
:: REAL_LAT:def 5
for
b1,
b2 being
Element of
Funcs a1,
REAL holds
a2 . b1,
b2 = maxreal .: b1,
b2;
existence
ex b1 being BinOp of Funcs c1,REAL st
for b2, b3 being Element of Funcs c1,REAL holds b1 . b2,b3 = maxreal .: b2,b3
uniqueness
for b1, b2 being BinOp of Funcs c1,REAL st ( for b3, b4 being Element of Funcs c1,REAL holds b1 . b3,b4 = maxreal .: b3,b4 ) & ( for b3, b4 being Element of Funcs c1,REAL holds b2 . b3,b4 = maxreal .: b3,b4 ) holds
b1 = b2
func minfuncreal c1 -> BinOp of
Funcs a1,
REAL means :
Def6:
:: REAL_LAT:def 6
for
b1,
b2 being
Element of
Funcs a1,
REAL holds
a2 . b1,
b2 = minreal .: b1,
b2;
existence
ex b1 being BinOp of Funcs c1,REAL st
for b2, b3 being Element of Funcs c1,REAL holds b1 . b2,b3 = minreal .: b2,b3
uniqueness
for b1, b2 being BinOp of Funcs c1,REAL st ( for b3, b4 being Element of Funcs c1,REAL holds b1 . b3,b4 = minreal .: b3,b4 ) & ( for b3, b4 being Element of Funcs c1,REAL holds b2 . b3,b4 = minreal .: b3,b4 ) holds
b1 = b2
end;
:: deftheorem Def5 defines maxfuncreal REAL_LAT:def 5 :
:: deftheorem Def6 defines minfuncreal REAL_LAT:def 6 :
Lemma19:
for b1, b2 being non empty set
for b3 being Element of b1
for b4 being Function of b1,b2 holds b3 in dom b4
theorem Th15: :: REAL_LAT:15
canceled;
theorem Th16: :: REAL_LAT:16
canceled;
theorem Th17: :: REAL_LAT:17
canceled;
theorem Th18: :: REAL_LAT:18
canceled;
theorem Th19: :: REAL_LAT:19
canceled;
theorem Th20: :: REAL_LAT:20
theorem Th21: :: REAL_LAT:21
theorem Th22: :: REAL_LAT:22
theorem Th23: :: REAL_LAT:23
theorem Th24: :: REAL_LAT:24
theorem Th25: :: REAL_LAT:25
theorem Th26: :: REAL_LAT:26
theorem Th27: :: REAL_LAT:27
theorem Th28: :: REAL_LAT:28
theorem Th29: :: REAL_LAT:29
theorem Th30: :: REAL_LAT:30
theorem Th31: :: REAL_LAT:31
theorem Th32: :: REAL_LAT:32
:: deftheorem Def7 REAL_LAT:def 7 :
canceled;
:: deftheorem Def8 REAL_LAT:def 8 :
canceled;
:: deftheorem Def9 defines @ REAL_LAT:def 9 :
Lemma31:
for b1 being non empty set
for b2, b3, b4 being Element of LattStr(# (Funcs b1,REAL ),(maxfuncreal b1),(minfuncreal b1) #) holds b2 "\/" (b3 "\/" b4) = (b2 "\/" b3) "\/" b4
by Th22;
Lemma32:
for b1 being non empty set
for b2, b3, b4 being Element of LattStr(# (Funcs b1,REAL ),(maxfuncreal b1),(minfuncreal b1) #) holds b2 "/\" (b3 "/\" b4) = (b2 "/\" b3) "/\" b4
by Th23;
:: deftheorem Def10 defines RealFunc_Lattice REAL_LAT:def 10 :
theorem Th33: :: REAL_LAT:33
canceled;
theorem Th34: :: REAL_LAT:34
canceled;
theorem Th35: :: REAL_LAT:35
canceled;
theorem Th36: :: REAL_LAT:36
canceled;
theorem Th37: :: REAL_LAT:37
canceled;
theorem Th38: :: REAL_LAT:38
canceled;
theorem Th39: :: REAL_LAT:39
canceled;
theorem Th40: :: REAL_LAT:40
theorem Th41: :: REAL_LAT:41
theorem Th42: :: REAL_LAT:42
for
b1 being non
empty set for
b2,
b3,
b4 being
Element of
(RealFunc_Lattice b1) holds
(
(maxfuncreal b1) . b2,
((maxfuncreal b1) . b3,b4) = (maxfuncreal b1) . ((maxfuncreal b1) . b3,b4),
b2 &
(maxfuncreal b1) . b2,
((maxfuncreal b1) . b3,b4) = (maxfuncreal b1) . ((maxfuncreal b1) . b2,b3),
b4 &
(maxfuncreal b1) . b2,
((maxfuncreal b1) . b3,b4) = (maxfuncreal b1) . ((maxfuncreal b1) . b3,b2),
b4 &
(maxfuncreal b1) . b2,
((maxfuncreal b1) . b3,b4) = (maxfuncreal b1) . ((maxfuncreal b1) . b4,b2),
b3 &
(maxfuncreal b1) . b2,
((maxfuncreal b1) . b3,b4) = (maxfuncreal b1) . ((maxfuncreal b1) . b4,b3),
b2 &
(maxfuncreal b1) . b2,
((maxfuncreal b1) . b3,b4) = (maxfuncreal b1) . ((maxfuncreal b1) . b2,b4),
b3 )
theorem Th43: :: REAL_LAT:43
for
b1 being non
empty set for
b2,
b3,
b4 being
Element of
(RealFunc_Lattice b1) holds
(
(minfuncreal b1) . b2,
((minfuncreal b1) . b3,b4) = (minfuncreal b1) . ((minfuncreal b1) . b3,b4),
b2 &
(minfuncreal b1) . b2,
((minfuncreal b1) . b3,b4) = (minfuncreal b1) . ((minfuncreal b1) . b2,b3),
b4 &
(minfuncreal b1) . b2,
((minfuncreal b1) . b3,b4) = (minfuncreal b1) . ((minfuncreal b1) . b3,b2),
b4 &
(minfuncreal b1) . b2,
((minfuncreal b1) . b3,b4) = (minfuncreal b1) . ((minfuncreal b1) . b4,b2),
b3 &
(minfuncreal b1) . b2,
((minfuncreal b1) . b3,b4) = (minfuncreal b1) . ((minfuncreal b1) . b4,b3),
b2 &
(minfuncreal b1) . b2,
((minfuncreal b1) . b3,b4) = (minfuncreal b1) . ((minfuncreal b1) . b2,b4),
b3 )
theorem Th44: :: REAL_LAT:44
theorem Th45: :: REAL_LAT:45
theorem Th46: :: REAL_LAT:46
theorem Th47: :: REAL_LAT:47