:: RMOD_4 semantic presentation
Lemma1:
for b1 being Ring
for b2 being RightMod of b1
for b3 being Vector of b2
for b4, b5 being FinSequence of the carrier of b2 st len b4 = (len b5) + 1 & b5 = b4 | (Seg (len b5)) & b3 = b4 . (len b4) holds
Sum b4 = (Sum b5) + b3
theorem Th1: :: RMOD_4:1
Lemma3:
for b1 being Ring
for b2 being RightMod of b1
for b3 being Scalar of b1
for b4, b5 being FinSequence of the carrier of b2 st len b4 = len b5 & ( for b6 being Nat st b6 in dom b4 holds
b5 . b6 = (b4 /. b6) * b3 ) holds
Sum b5 = (Sum b4) * b3
theorem Th2: :: RMOD_4:2
theorem Th3: :: RMOD_4:3
theorem Th4: :: RMOD_4:4
:: deftheorem Def1 RMOD_4:def 1 :
canceled;
:: deftheorem Def2 RMOD_4:def 2 :
canceled;
:: deftheorem Def3 defines Sum RMOD_4:def 3 :
theorem Th5: :: RMOD_4:5
theorem Th6: :: RMOD_4:6
theorem Th7: :: RMOD_4:7
theorem Th8: :: RMOD_4:8
theorem Th9: :: RMOD_4:9
theorem Th10: :: RMOD_4:10
theorem Th11: :: RMOD_4:11
theorem Th12: :: RMOD_4:12
theorem Th13: :: RMOD_4:13
theorem Th14: :: RMOD_4:14
theorem Th15: :: RMOD_4:15
:: deftheorem Def4 defines Linear_Combination RMOD_4:def 4 :
:: deftheorem Def5 defines Carrier RMOD_4:def 5 :
theorem Th16: :: RMOD_4:16
canceled;
theorem Th17: :: RMOD_4:17
canceled;
theorem Th18: :: RMOD_4:18
canceled;
theorem Th19: :: RMOD_4:19
theorem Th20: :: RMOD_4:20
:: deftheorem Def6 defines ZeroLC RMOD_4:def 6 :
theorem Th21: :: RMOD_4:21
canceled;
theorem Th22: :: RMOD_4:22
:: deftheorem Def7 defines Linear_Combination RMOD_4:def 7 :
theorem Th23: :: RMOD_4:23
canceled;
theorem Th24: :: RMOD_4:24
canceled;
theorem Th25: :: RMOD_4:25
theorem Th26: :: RMOD_4:26
theorem Th27: :: RMOD_4:27
theorem Th28: :: RMOD_4:28
:: deftheorem Def8 defines (#) RMOD_4:def 8 :
theorem Th29: :: RMOD_4:29
canceled;
theorem Th30: :: RMOD_4:30
canceled;
theorem Th31: :: RMOD_4:31
canceled;
theorem Th32: :: RMOD_4:32
theorem Th33: :: RMOD_4:33
theorem Th34: :: RMOD_4:34
theorem Th35: :: RMOD_4:35
theorem Th36: :: RMOD_4:36
theorem Th37: :: RMOD_4:37
:: deftheorem Def9 defines Sum RMOD_4:def 9 :
Lemma22:
for b1 being Ring
for b2 being RightMod of b1 holds Sum (ZeroLC b2) = 0. b2
theorem Th38: :: RMOD_4:38
canceled;
theorem Th39: :: RMOD_4:39
canceled;
theorem Th40: :: RMOD_4:40
theorem Th41: :: RMOD_4:41
theorem Th42: :: RMOD_4:42
theorem Th43: :: RMOD_4:43
theorem Th44: :: RMOD_4:44
theorem Th45: :: RMOD_4:45
theorem Th46: :: RMOD_4:46
theorem Th47: :: RMOD_4:47
:: deftheorem Def10 defines = RMOD_4:def 10 :
:: deftheorem Def11 defines + RMOD_4:def 11 :
theorem Th48: :: RMOD_4:48
canceled;
theorem Th49: :: RMOD_4:49
canceled;
theorem Th50: :: RMOD_4:50
canceled;
theorem Th51: :: RMOD_4:51
theorem Th52: :: RMOD_4:52
theorem Th53: :: RMOD_4:53
theorem Th54: :: RMOD_4:54
theorem Th55: :: RMOD_4:55
:: deftheorem Def12 defines * RMOD_4:def 12 :
theorem Th56: :: RMOD_4:56
canceled;
theorem Th57: :: RMOD_4:57
canceled;
theorem Th58: :: RMOD_4:58
theorem Th59: :: RMOD_4:59
theorem Th60: :: RMOD_4:60
theorem Th61: :: RMOD_4:61
theorem Th62: :: RMOD_4:62
theorem Th63: :: RMOD_4:63
theorem Th64: :: RMOD_4:64
theorem Th65: :: RMOD_4:65
:: deftheorem Def13 defines - RMOD_4:def 13 :
theorem Th66: :: RMOD_4:66
canceled;
theorem Th67: :: RMOD_4:67
theorem Th68: :: RMOD_4:68
theorem Th69: :: RMOD_4:69
theorem Th70: :: RMOD_4:70
:: deftheorem Def14 defines - RMOD_4:def 14 :
theorem Th71: :: RMOD_4:71
canceled;
theorem Th72: :: RMOD_4:72
canceled;
theorem Th73: :: RMOD_4:73
theorem Th74: :: RMOD_4:74
theorem Th75: :: RMOD_4:75
theorem Th76: :: RMOD_4:76
theorem Th77: :: RMOD_4:77
theorem Th78: :: RMOD_4:78
theorem Th79: :: RMOD_4:79
theorem Th80: :: RMOD_4:80