environ 
vocabularies HIDDEN, VECTSP_1, SUBSET_1, FINSET_1, RLVECT_2, FUNCT_1, STRUCT_0, RLVECT_3, CARD_3, SUPINF_2, XBOOLE_0, TARSKI, GROUP_1, FUNCT_2, RELAT_1, ARYTM_1, ARYTM_3, MESFUNC1, RLSUB_1, ZFMISC_1, ORDINAL1, ORDERS_1, RLVECT_1, ALGSTR_0, BINOP_1, LATTICES, FUNCSDOM, FINSEQ_1, VECTSP_2, MOD_3, PRELAMB, VALUED_1, PARTFUN1, ORDINAL4, NAT_1;
notations HIDDEN, TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, RELAT_1, FUNCT_1, PARTFUN1, FINSEQ_1, FUNCT_2, FINSET_1, ORDERS_1, DOMAIN_1, STRUCT_0, ORDINAL1, ALGSTR_0, RLVECT_1, GROUP_1, VECTSP_1, VECTSP_2, VECTSP_4, VECTSP_5, VECTSP_6;
definitions XBOOLE_0, VECTSP_4, VECTSP_6, TARSKI;
theorems FUNCT_1, FINSET_1, ORDERS_1, RLVECT_3, TARSKI, VECTSP_1, VECTSP_2, VECTSP_4, VECTSP_5, VECTSP_6, ZFMISC_1, RLVECT_1, FUNCT_2, RELAT_1, ORDINAL1, XBOOLE_0, XBOOLE_1, CARD_2, STRUCT_0, PARTFUN1, RLVECT_2, SUBSET_1, FINSEQ_1, FINSEQ_3, FINSEQ_4;
schemes FUNCT_1, FUNCT_2, XFAMILY;
registrations XBOOLE_0, SUBSET_1, RELSET_1, FINSET_1, STRUCT_0, VECTSP_1, VECTSP_4, ALGSTR_0, VECTSP_2, ORDINAL1;
constructors HIDDEN, ORDERS_1, REALSET1, VECTSP_5, VECTSP_6, STRUCT_0, GROUP_1, RLVECT_2, VECTSP_2, PARTFUN1, RELSET_1;
requirements HIDDEN, SUBSET, BOOLE;
equalities VECTSP_4, VECTSP_6, XBOOLE_0;
expansions XBOOLE_0, TARSKI;
TH2: 
 for GF being   Ring
  for V being   LeftMod of GF
  for L being    Linear_Combination of V
  for C being   finite  Subset of V  st  Carrier L c= C holds 
 ex F being   FinSequence of V st 
( F is  one-to-one  &  rng F = C &  Sum L =  Sum (L (#) F) )
 
TH3: 
 for GF being   Ring
  for V being   LeftMod of GF
  for L being    Linear_Combination of V
  for a being   Scalar of  holds   Sum (a * L) = a * (Sum L)
 
Lm1: 
 for R being   Ring
  for a being   Scalar of R  st  - a =  0. R holds 
a =  0. R
 
Lm2: 
 for R being   non  degenerated   almost_left_invertible  Ring
  for V being   LeftMod of R
  for a being   Scalar of 
  for v being   Vector of V  st a <>  0. R holds 
( (a ") * (a * v) = (1. R) * v & ((a ") * a) * v = (1. R) * v )
 
Lem0A: 
 for GF being   non  empty   right_complementable   well-unital   distributive   Abelian   add-associative   right_zeroed   associative   doubleLoopStr 
  for V being   LeftMod of GF holds   {}  the carrier of V is  linearly-independent 
 
Lem1A: 
 for GF being   non  empty   right_complementable   almost_left_invertible   well-unital   distributive   Abelian   add-associative   right_zeroed   associative   doubleLoopStr 
  for V being   LeftMod of GF holds   (0). V is  free