:: JORDAN19 semantic presentation
definition
let c1 be
Simple_closed_curve;
func Upper_Appr c1 -> SetSequence of the
carrier of
(TOP-REAL 2) means :
Def1:
:: JORDAN19:def 1
for
b1 being
Nat holds
a2 . b1 = Upper_Arc (L~ (Cage a1,b1));
existence
ex b1 being SetSequence of the carrier of (TOP-REAL 2) st
for b2 being Nat holds b1 . b2 = Upper_Arc (L~ (Cage c1,b2))
uniqueness
for b1, b2 being SetSequence of the carrier of (TOP-REAL 2) st ( for b3 being Nat holds b1 . b3 = Upper_Arc (L~ (Cage c1,b3)) ) & ( for b3 being Nat holds b2 . b3 = Upper_Arc (L~ (Cage c1,b3)) ) holds
b1 = b2
func Lower_Appr c1 -> SetSequence of the
carrier of
(TOP-REAL 2) means :
Def2:
:: JORDAN19:def 2
for
b1 being
Nat holds
a2 . b1 = Lower_Arc (L~ (Cage a1,b1));
existence
ex b1 being SetSequence of the carrier of (TOP-REAL 2) st
for b2 being Nat holds b1 . b2 = Lower_Arc (L~ (Cage c1,b2))
uniqueness
for b1, b2 being SetSequence of the carrier of (TOP-REAL 2) st ( for b3 being Nat holds b1 . b3 = Lower_Arc (L~ (Cage c1,b3)) ) & ( for b3 being Nat holds b2 . b3 = Lower_Arc (L~ (Cage c1,b3)) ) holds
b1 = b2
end;
:: deftheorem Def1 defines Upper_Appr JORDAN19:def 1 :
:: deftheorem Def2 defines Lower_Appr JORDAN19:def 2 :
:: deftheorem Def3 defines North_Arc JORDAN19:def 3 :
:: deftheorem Def4 defines South_Arc JORDAN19:def 4 :
E4:
now
let c1 be non
empty Subset of
(TOP-REAL 2);
let c2,
c3 be
Nat;
set c4 =
N-bound c1;
set c5 =
S-bound c1;
set c6 =
W-bound c1;
set c7 =
E-bound c1;
set c8 =
Gauge c1,
c2;
assume
[c3,(width (Gauge c1,c2))] in Indices (Gauge c1,c2)
;
hence ((Gauge c1,c2) * c3,(width (Gauge c1,c2))) `2 =
|[((W-bound c1) + ((((E-bound c1) - (W-bound c1)) / (2 |^ c2)) * (c3 - 2))),((S-bound c1) + ((((N-bound c1) - (S-bound c1)) / (2 |^ c2)) * ((width (Gauge c1,c2)) - 2)))]| `2
by JORDAN8:def 1
.=
(S-bound c1) + ((((N-bound c1) - (S-bound c1)) / (2 |^ c2)) * ((width (Gauge c1,c2)) - 2))
by EUCLID:56
;
end;
theorem Th1: :: JORDAN19:1
for
b1,
b2 being
Nat st
b1 <= b2 &
b1 <> 0 holds
(b1 + 1) / b1 >= (b2 + 1) / b2
theorem Th2: :: JORDAN19:2
for
b1 being
Nat for
b2 being
compact non
horizontal non
vertical Subset of
(TOP-REAL 2) for
b3,
b4 being
Nat st 1
<= b3 &
b3 <= b1 & 1
<= b4 &
b4 <= width (Gauge b2,b1) holds
LSeg ((Gauge b2,b1) * (Center (Gauge b2,b1)),(width (Gauge b2,b1))),
((Gauge b2,b1) * (Center (Gauge b2,b1)),b4) c= LSeg ((Gauge b2,b3) * (Center (Gauge b2,b3)),(width (Gauge b2,b3))),
((Gauge b2,b1) * (Center (Gauge b2,b1)),b4)
theorem Th3: :: JORDAN19:3
for
b1 being
Nat for
b2 being
connected compact non
horizontal non
vertical Subset of
(TOP-REAL 2) for
b3,
b4 being
Nat st 1
<= b3 &
b3 <= len (Gauge b2,b1) & 1
<= b4 &
b4 <= width (Gauge b2,b1) &
(Gauge b2,b1) * b3,
b4 in L~ (Cage b2,b1) holds
LSeg ((Gauge b2,b1) * b3,(width (Gauge b2,b1))),
((Gauge b2,b1) * b3,b4) meets L~ (Upper_Seq b2,b1)
theorem Th4: :: JORDAN19:4
for
b1 being
connected compact non
horizontal non
vertical Subset of
(TOP-REAL 2) for
b2 being
Nat st
b2 > 0 holds
for
b3,
b4 being
Nat st 1
<= b3 &
b3 <= len (Gauge b1,b2) & 1
<= b4 &
b4 <= width (Gauge b1,b2) &
(Gauge b1,b2) * b3,
b4 in L~ (Cage b1,b2) holds
LSeg ((Gauge b1,b2) * b3,(width (Gauge b1,b2))),
((Gauge b1,b2) * b3,b4) meets Upper_Arc (L~ (Cage b1,b2))
theorem Th5: :: JORDAN19:5
for
b1 being
Nat for
b2 being
connected compact non
horizontal non
vertical Subset of
(TOP-REAL 2) for
b3 being
Nat st
(Gauge b2,(b1 + 1)) * (Center (Gauge b2,(b1 + 1))),
b3 in Lower_Arc (L~ (Cage b2,(b1 + 1))) & 1
<= b3 &
b3 <= width (Gauge b2,(b1 + 1)) holds
LSeg ((Gauge b2,1) * (Center (Gauge b2,1)),(width (Gauge b2,1))),
((Gauge b2,(b1 + 1)) * (Center (Gauge b2,(b1 + 1))),b3) meets Upper_Arc (L~ (Cage b2,(b1 + 1)))
theorem Th6: :: JORDAN19:6
theorem Th7: :: JORDAN19:7
theorem Th8: :: JORDAN19:8
theorem Th9: :: JORDAN19:9
theorem Th10: :: JORDAN19:10
theorem Th11: :: JORDAN19:11
theorem Th12: :: JORDAN19:12
theorem Th13: :: JORDAN19:13
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5 being
Nat st 1
< b3 &
b3 < len (Gauge b2,b1) & 1
<= b5 &
b5 <= b4 &
b4 <= width (Gauge b2,b1) &
(LSeg ((Gauge b2,b1) * b3,b5),((Gauge b2,b1) * b3,b4)) /\ (L~ (Upper_Seq b2,b1)) = {((Gauge b2,b1) * b3,b5)} &
(LSeg ((Gauge b2,b1) * b3,b5),((Gauge b2,b1) * b3,b4)) /\ (L~ (Lower_Seq b2,b1)) = {((Gauge b2,b1) * b3,b4)} holds
LSeg ((Gauge b2,b1) * b3,b5),
((Gauge b2,b1) * b3,b4) meets Upper_Arc b2
theorem Th14: :: JORDAN19:14
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5 being
Nat st 1
< b3 &
b3 < len (Gauge b2,b1) & 1
<= b5 &
b5 <= b4 &
b4 <= width (Gauge b2,b1) &
(LSeg ((Gauge b2,b1) * b3,b5),((Gauge b2,b1) * b3,b4)) /\ (L~ (Upper_Seq b2,b1)) = {((Gauge b2,b1) * b3,b5)} &
(LSeg ((Gauge b2,b1) * b3,b5),((Gauge b2,b1) * b3,b4)) /\ (L~ (Lower_Seq b2,b1)) = {((Gauge b2,b1) * b3,b4)} holds
LSeg ((Gauge b2,b1) * b3,b5),
((Gauge b2,b1) * b3,b4) meets Lower_Arc b2
theorem Th15: :: JORDAN19:15
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5 being
Nat st 1
< b3 &
b3 < len (Gauge b2,b1) & 1
<= b4 &
b4 <= b5 &
b5 <= width (Gauge b2,b1) &
b1 > 0 &
(LSeg ((Gauge b2,b1) * b3,b4),((Gauge b2,b1) * b3,b5)) /\ (Lower_Arc (L~ (Cage b2,b1))) = {((Gauge b2,b1) * b3,b5)} &
(LSeg ((Gauge b2,b1) * b3,b4),((Gauge b2,b1) * b3,b5)) /\ (Upper_Arc (L~ (Cage b2,b1))) = {((Gauge b2,b1) * b3,b4)} holds
LSeg ((Gauge b2,b1) * b3,b4),
((Gauge b2,b1) * b3,b5) meets Upper_Arc b2
theorem Th16: :: JORDAN19:16
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5 being
Nat st 1
< b3 &
b3 < len (Gauge b2,b1) & 1
<= b4 &
b4 <= b5 &
b5 <= width (Gauge b2,b1) &
b1 > 0 &
(LSeg ((Gauge b2,b1) * b3,b4),((Gauge b2,b1) * b3,b5)) /\ (Lower_Arc (L~ (Cage b2,b1))) = {((Gauge b2,b1) * b3,b5)} &
(LSeg ((Gauge b2,b1) * b3,b4),((Gauge b2,b1) * b3,b5)) /\ (Upper_Arc (L~ (Cage b2,b1))) = {((Gauge b2,b1) * b3,b4)} holds
LSeg ((Gauge b2,b1) * b3,b4),
((Gauge b2,b1) * b3,b5) meets Lower_Arc b2
theorem Th17: :: JORDAN19:17
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5 being
Nat st 1
< b3 &
b3 < len (Gauge b2,b1) & 1
<= b4 &
b4 <= b5 &
b5 <= width (Gauge b2,b1) &
(Gauge b2,b1) * b3,
b5 in L~ (Lower_Seq b2,b1) &
(Gauge b2,b1) * b3,
b4 in L~ (Upper_Seq b2,b1) holds
LSeg ((Gauge b2,b1) * b3,b4),
((Gauge b2,b1) * b3,b5) meets Upper_Arc b2
theorem Th18: :: JORDAN19:18
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5 being
Nat st 1
< b3 &
b3 < len (Gauge b2,b1) & 1
<= b4 &
b4 <= b5 &
b5 <= width (Gauge b2,b1) &
(Gauge b2,b1) * b3,
b5 in L~ (Lower_Seq b2,b1) &
(Gauge b2,b1) * b3,
b4 in L~ (Upper_Seq b2,b1) holds
LSeg ((Gauge b2,b1) * b3,b4),
((Gauge b2,b1) * b3,b5) meets Lower_Arc b2
theorem Th19: :: JORDAN19:19
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5 being
Nat st 1
< b3 &
b3 < len (Gauge b2,b1) & 1
<= b4 &
b4 <= b5 &
b5 <= width (Gauge b2,b1) &
b1 > 0 &
(Gauge b2,b1) * b3,
b5 in Lower_Arc (L~ (Cage b2,b1)) &
(Gauge b2,b1) * b3,
b4 in Upper_Arc (L~ (Cage b2,b1)) holds
LSeg ((Gauge b2,b1) * b3,b4),
((Gauge b2,b1) * b3,b5) meets Upper_Arc b2
theorem Th20: :: JORDAN19:20
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5 being
Nat st 1
< b3 &
b3 < len (Gauge b2,b1) & 1
<= b4 &
b4 <= b5 &
b5 <= width (Gauge b2,b1) &
b1 > 0 &
(Gauge b2,b1) * b3,
b5 in Lower_Arc (L~ (Cage b2,b1)) &
(Gauge b2,b1) * b3,
b4 in Upper_Arc (L~ (Cage b2,b1)) holds
LSeg ((Gauge b2,b1) * b3,b4),
((Gauge b2,b1) * b3,b5) meets Lower_Arc b2
theorem Th21: :: JORDAN19:21
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5,
b6 being
Nat st 1
< b3 &
b3 <= b4 &
b4 < len (Gauge b2,b1) & 1
<= b5 &
b5 <= b6 &
b6 <= width (Gauge b2,b1) &
((LSeg ((Gauge b2,b1) * b3,b5),((Gauge b2,b1) * b3,b6)) \/ (LSeg ((Gauge b2,b1) * b3,b6),((Gauge b2,b1) * b4,b6))) /\ (L~ (Upper_Seq b2,b1)) = {((Gauge b2,b1) * b3,b5)} &
((LSeg ((Gauge b2,b1) * b3,b5),((Gauge b2,b1) * b3,b6)) \/ (LSeg ((Gauge b2,b1) * b3,b6),((Gauge b2,b1) * b4,b6))) /\ (L~ (Lower_Seq b2,b1)) = {((Gauge b2,b1) * b4,b6)} holds
(LSeg ((Gauge b2,b1) * b3,b5),((Gauge b2,b1) * b3,b6)) \/ (LSeg ((Gauge b2,b1) * b3,b6),((Gauge b2,b1) * b4,b6)) meets Upper_Arc b2
theorem Th22: :: JORDAN19:22
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5,
b6 being
Nat st 1
< b3 &
b3 <= b4 &
b4 < len (Gauge b2,b1) & 1
<= b5 &
b5 <= b6 &
b6 <= width (Gauge b2,b1) &
((LSeg ((Gauge b2,b1) * b3,b5),((Gauge b2,b1) * b3,b6)) \/ (LSeg ((Gauge b2,b1) * b3,b6),((Gauge b2,b1) * b4,b6))) /\ (L~ (Upper_Seq b2,b1)) = {((Gauge b2,b1) * b3,b5)} &
((LSeg ((Gauge b2,b1) * b3,b5),((Gauge b2,b1) * b3,b6)) \/ (LSeg ((Gauge b2,b1) * b3,b6),((Gauge b2,b1) * b4,b6))) /\ (L~ (Lower_Seq b2,b1)) = {((Gauge b2,b1) * b4,b6)} holds
(LSeg ((Gauge b2,b1) * b3,b5),((Gauge b2,b1) * b3,b6)) \/ (LSeg ((Gauge b2,b1) * b3,b6),((Gauge b2,b1) * b4,b6)) meets Lower_Arc b2
theorem Th23: :: JORDAN19:23
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5,
b6 being
Nat st 1
< b4 &
b4 <= b3 &
b3 < len (Gauge b2,b1) & 1
<= b5 &
b5 <= b6 &
b6 <= width (Gauge b2,b1) &
((LSeg ((Gauge b2,b1) * b3,b5),((Gauge b2,b1) * b3,b6)) \/ (LSeg ((Gauge b2,b1) * b3,b6),((Gauge b2,b1) * b4,b6))) /\ (L~ (Upper_Seq b2,b1)) = {((Gauge b2,b1) * b3,b5)} &
((LSeg ((Gauge b2,b1) * b3,b5),((Gauge b2,b1) * b3,b6)) \/ (LSeg ((Gauge b2,b1) * b3,b6),((Gauge b2,b1) * b4,b6))) /\ (L~ (Lower_Seq b2,b1)) = {((Gauge b2,b1) * b4,b6)} holds
(LSeg ((Gauge b2,b1) * b3,b5),((Gauge b2,b1) * b3,b6)) \/ (LSeg ((Gauge b2,b1) * b3,b6),((Gauge b2,b1) * b4,b6)) meets Upper_Arc b2
theorem Th24: :: JORDAN19:24
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5,
b6 being
Nat st 1
< b4 &
b4 <= b3 &
b3 < len (Gauge b2,b1) & 1
<= b5 &
b5 <= b6 &
b6 <= width (Gauge b2,b1) &
((LSeg ((Gauge b2,b1) * b3,b5),((Gauge b2,b1) * b3,b6)) \/ (LSeg ((Gauge b2,b1) * b3,b6),((Gauge b2,b1) * b4,b6))) /\ (L~ (Upper_Seq b2,b1)) = {((Gauge b2,b1) * b3,b5)} &
((LSeg ((Gauge b2,b1) * b3,b5),((Gauge b2,b1) * b3,b6)) \/ (LSeg ((Gauge b2,b1) * b3,b6),((Gauge b2,b1) * b4,b6))) /\ (L~ (Lower_Seq b2,b1)) = {((Gauge b2,b1) * b4,b6)} holds
(LSeg ((Gauge b2,b1) * b3,b5),((Gauge b2,b1) * b3,b6)) \/ (LSeg ((Gauge b2,b1) * b3,b6),((Gauge b2,b1) * b4,b6)) meets Lower_Arc b2
theorem Th25: :: JORDAN19:25
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5,
b6 being
Nat st 1
< b3 &
b3 < len (Gauge b2,(b1 + 1)) & 1
< b4 &
b4 < len (Gauge b2,(b1 + 1)) & 1
<= b5 &
b5 <= b6 &
b6 <= width (Gauge b2,(b1 + 1)) &
(Gauge b2,(b1 + 1)) * b3,
b6 in Lower_Arc (L~ (Cage b2,(b1 + 1))) &
(Gauge b2,(b1 + 1)) * b4,
b5 in Upper_Arc (L~ (Cage b2,(b1 + 1))) holds
(LSeg ((Gauge b2,(b1 + 1)) * b4,b5),((Gauge b2,(b1 + 1)) * b4,b6)) \/ (LSeg ((Gauge b2,(b1 + 1)) * b4,b6),((Gauge b2,(b1 + 1)) * b3,b6)) meets Lower_Arc b2
theorem Th26: :: JORDAN19:26
for
b1 being
Nat for
b2 being
Simple_closed_curve for
b3,
b4,
b5,
b6 being
Nat st 1
< b3 &
b3 < len (Gauge b2,(b1 + 1)) & 1
< b4 &
b4 < len (Gauge b2,(b1 + 1)) & 1
<= b5 &
b5 <= b6 &
b6 <= width (Gauge b2,(b1 + 1)) &
(Gauge b2,(b1 + 1)) * b3,
b6 in Lower_Arc (L~ (Cage b2,(b1 + 1))) &
(Gauge b2,(b1 + 1)) * b4,
b5 in Upper_Arc (L~ (Cage b2,(b1 + 1))) holds
(LSeg ((Gauge b2,(b1 + 1)) * b4,b5),((Gauge b2,(b1 + 1)) * b4,b6)) \/ (LSeg ((Gauge b2,(b1 + 1)) * b4,b6),((Gauge b2,(b1 + 1)) * b3,b6)) meets Upper_Arc b2
theorem Th27: :: JORDAN19:27
theorem Th28: :: JORDAN19:28