:: RSSPACE4  semantic presentation
Lemma1: 
for b1 being  Real_Sequence
 for b2 being real  number   st ( for b3 being  Nat holds  b1 . b3 <= b2 ) holds 
 sup (rng b1) <= b2
 
Lemma2: 
for b1 being  Real_Sequence  st b1 is bounded holds 
for b2 being  Nat holds  b1 . b2 <=  sup (rng b1)
 
:: deftheorem Def1   defines the_set_of_BoundedRealSequences RSSPACE4:def 1 : 
Lemma4: 
 RLSStruct(# the_set_of_BoundedRealSequences ,(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ) #) is    Subspace of  Linear_Space_of_RealSequences 
 
by RSSPACE:13;
registration
cluster  RLSStruct(# 
the_set_of_BoundedRealSequences ,
(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),
(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),
(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ) #)
 -> Abelian add-associative right_zeroed right_complementable RealLinearSpace-like ;
coherence 
(  RLSStruct(# the_set_of_BoundedRealSequences ,(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ) #) is Abelian &  RLSStruct(# the_set_of_BoundedRealSequences ,(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ) #) is add-associative &  RLSStruct(# the_set_of_BoundedRealSequences ,(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ) #) is right_zeroed &  RLSStruct(# the_set_of_BoundedRealSequences ,(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ) #) is right_complementable &  RLSStruct(# the_set_of_BoundedRealSequences ,(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ) #) is RealLinearSpace-like )
 by RSSPACE:13;
 
end;
 
Lemma5: 
(  RLSStruct(# the_set_of_BoundedRealSequences ,(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ) #) is Abelian &  RLSStruct(# the_set_of_BoundedRealSequences ,(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ) #) is add-associative &  RLSStruct(# the_set_of_BoundedRealSequences ,(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ) #) is right_zeroed &  RLSStruct(# the_set_of_BoundedRealSequences ,(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ) #) is right_complementable &  RLSStruct(# the_set_of_BoundedRealSequences ,(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ) #) is RealLinearSpace-like )
 
;
Lemma6: 
ex b1 being  Function of  the_set_of_BoundedRealSequences , REAL  st 
for b2 being   set   st b2 in  the_set_of_BoundedRealSequences  holds 
b1 . b2 =  sup (rng (abs (seq_id b2)))
 
:: deftheorem Def2   defines linfty_norm RSSPACE4:def 2 : 
Lemma8: 
for b1 being  Real_Sequence  st ( for b2 being  Nat holds  b1 . b2 = 0 ) holds 
( b1 is bounded &  sup (rng (abs b1)) = 0 )
 
Lemma9: 
for b1 being  Real_Sequence  st b1 is bounded &  sup (rng (abs b1)) = 0 holds 
for b2 being  Nat holds  b1 . b2 = 0
 
theorem Th1: :: RSSPACE4:1
canceled; 
theorem Th2: :: RSSPACE4:2
registration
cluster  NORMSTR(# 
the_set_of_BoundedRealSequences ,
(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),
(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),
(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),
linfty_norm  #)
 -> Abelian add-associative right_zeroed right_complementable RealLinearSpace-like ;
coherence 
(  NORMSTR(# the_set_of_BoundedRealSequences ,(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),linfty_norm  #) is Abelian &  NORMSTR(# the_set_of_BoundedRealSequences ,(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),linfty_norm  #) is add-associative &  NORMSTR(# the_set_of_BoundedRealSequences ,(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),linfty_norm  #) is right_zeroed &  NORMSTR(# the_set_of_BoundedRealSequences ,(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),linfty_norm  #) is right_complementable &  NORMSTR(# the_set_of_BoundedRealSequences ,(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),linfty_norm  #) is RealLinearSpace-like )
 by Lemma5, RSSPACE3:4;
 
end;
 
definition
func  linfty_Space  ->  non 
empty  NORMSTR  equals :: RSSPACE4:def 3
 NORMSTR(# 
the_set_of_BoundedRealSequences ,
(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),
(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),
(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),
linfty_norm  #);
coherence 
 NORMSTR(# the_set_of_BoundedRealSequences ,(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),linfty_norm  #) is  non empty  NORMSTR 
 ;
 
end;
 
:: deftheorem Def3   defines linfty_Space RSSPACE4:def 3 : 
theorem Th3: :: RSSPACE4:3
theorem Th4: :: RSSPACE4:4
theorem Th5: :: RSSPACE4:5
:: deftheorem Def4   defines bounded RSSPACE4:def 4 : 
theorem Th6: :: RSSPACE4:6
:: deftheorem Def5   defines BoundedFunctions RSSPACE4:def 5 : 
theorem Th7: :: RSSPACE4:7
theorem Th8: :: RSSPACE4:8
for 
b1 being non 
empty  set  for 
b2 being  
RealNormSpace holds   
RLSStruct(# 
(BoundedFunctions b1,b2),
(Zero_ (BoundedFunctions b1,b2),(RealVectSpace b1,b2)),
(Add_ (BoundedFunctions b1,b2),(RealVectSpace b1,b2)),
(Mult_ (BoundedFunctions b1,b2),(RealVectSpace b1,b2)) #) is    
Subspace of  
RealVectSpace b1,
b2
registration
let c1 be  non 
empty  set ;
let c2 be   
RealNormSpace;
cluster  RLSStruct(# 
(BoundedFunctions a1,a2),
(Zero_ (BoundedFunctions a1,a2),(RealVectSpace a1,a2)),
(Add_ (BoundedFunctions a1,a2),(RealVectSpace a1,a2)),
(Mult_ (BoundedFunctions a1,a2),(RealVectSpace a1,a2)) #)
 -> Abelian add-associative right_zeroed right_complementable RealLinearSpace-like ;
coherence 
(  RLSStruct(# (BoundedFunctions c1,c2),(Zero_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)),(Add_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)),(Mult_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)) #) is Abelian &  RLSStruct(# (BoundedFunctions c1,c2),(Zero_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)),(Add_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)),(Mult_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)) #) is add-associative &  RLSStruct(# (BoundedFunctions c1,c2),(Zero_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)),(Add_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)),(Mult_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)) #) is right_zeroed &  RLSStruct(# (BoundedFunctions c1,c2),(Zero_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)),(Add_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)),(Mult_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)) #) is right_complementable &  RLSStruct(# (BoundedFunctions c1,c2),(Zero_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)),(Add_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)),(Mult_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)) #) is RealLinearSpace-like )
 by Th8;
 
end;
 
definition
let c1 be  non 
empty  set ;
let c2 be   
RealNormSpace;
func  R_VectorSpace_of_BoundedFunctions c1,
c2 ->   RealLinearSpace equals :: RSSPACE4:def 6
 RLSStruct(# 
(BoundedFunctions a1,a2),
(Zero_ (BoundedFunctions a1,a2),(RealVectSpace a1,a2)),
(Add_ (BoundedFunctions a1,a2),(RealVectSpace a1,a2)),
(Mult_ (BoundedFunctions a1,a2),(RealVectSpace a1,a2)) #);
coherence 
 RLSStruct(# (BoundedFunctions c1,c2),(Zero_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)),(Add_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)),(Mult_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)) #) is   RealLinearSpace
 ;
 
end;
 
:: deftheorem Def6   defines R_VectorSpace_of_BoundedFunctions RSSPACE4:def 6 : 
for 
b1 being non 
empty  set  for 
b2 being  
RealNormSpace holds   
R_VectorSpace_of_BoundedFunctions b1,
b2 =  RLSStruct(# 
(BoundedFunctions b1,b2),
(Zero_ (BoundedFunctions b1,b2),(RealVectSpace b1,b2)),
(Add_ (BoundedFunctions b1,b2),(RealVectSpace b1,b2)),
(Mult_ (BoundedFunctions b1,b2),(RealVectSpace b1,b2)) #);
theorem Th9: :: RSSPACE4:9
canceled; 
theorem Th10: :: RSSPACE4:10
theorem Th11: :: RSSPACE4:11
theorem Th12: :: RSSPACE4:12
:: deftheorem Def7   defines modetrans RSSPACE4:def 7 : 
:: deftheorem Def8   defines PreNorms RSSPACE4:def 8 : 
theorem Th13: :: RSSPACE4:13
theorem Th14: :: RSSPACE4:14
theorem Th15: :: RSSPACE4:15
definition
let c1 be  non 
empty  set ;
let c2 be   
RealNormSpace;
func  BoundedFunctionsNorm c1,
c2 ->   Function of  
BoundedFunctions a1,
a2, 
REAL  means :
Def9: 
:: RSSPACE4:def 9
for 
b1 being   
set   st 
b1 in  BoundedFunctions a1,
a2 holds 
a3 . b1 =  sup (PreNorms (modetrans b1,a1,a2));
existence 
ex b1 being  Function of  BoundedFunctions c1,c2, REAL  st 
for b2 being   set   st b2 in  BoundedFunctions c1,c2 holds 
b1 . b2 =  sup (PreNorms (modetrans b2,c1,c2))
 by Th15;
uniqueness 
for b1, b2 being  Function of  BoundedFunctions c1,c2, REAL   st ( for b3 being   set   st b3 in  BoundedFunctions c1,c2 holds 
b1 . b3 =  sup (PreNorms (modetrans b3,c1,c2)) ) & ( for b3 being   set   st b3 in  BoundedFunctions c1,c2 holds 
b2 . b3 =  sup (PreNorms (modetrans b3,c1,c2)) ) holds 
b1 = b2
 
 
end;
 
:: deftheorem Def9   defines BoundedFunctionsNorm RSSPACE4:def 9 : 
theorem Th16: :: RSSPACE4:16
theorem Th17: :: RSSPACE4:17
definition
let c1 be  non 
empty  set ;
let c2 be   
RealNormSpace;
func  R_NormSpace_of_BoundedFunctions c1,
c2 ->  non 
empty  NORMSTR  equals :: RSSPACE4:def 10
 NORMSTR(# 
(BoundedFunctions a1,a2),
(Zero_ (BoundedFunctions a1,a2),(RealVectSpace a1,a2)),
(Add_ (BoundedFunctions a1,a2),(RealVectSpace a1,a2)),
(Mult_ (BoundedFunctions a1,a2),(RealVectSpace a1,a2)),
(BoundedFunctionsNorm a1,a2) #);
coherence 
 NORMSTR(# (BoundedFunctions c1,c2),(Zero_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)),(Add_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)),(Mult_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)),(BoundedFunctionsNorm c1,c2) #) is  non empty  NORMSTR 
 ;
 
end;
 
:: deftheorem Def10   defines R_NormSpace_of_BoundedFunctions RSSPACE4:def 10 : 
for 
b1 being non 
empty  set  for 
b2 being  
RealNormSpace holds   
R_NormSpace_of_BoundedFunctions b1,
b2 =  NORMSTR(# 
(BoundedFunctions b1,b2),
(Zero_ (BoundedFunctions b1,b2),(RealVectSpace b1,b2)),
(Add_ (BoundedFunctions b1,b2),(RealVectSpace b1,b2)),
(Mult_ (BoundedFunctions b1,b2),(RealVectSpace b1,b2)),
(BoundedFunctionsNorm b1,b2) #);
theorem Th18: :: RSSPACE4:18
theorem Th19: :: RSSPACE4:19
theorem Th20: :: RSSPACE4:20
theorem Th21: :: RSSPACE4:21
theorem Th22: :: RSSPACE4:22
theorem Th23: :: RSSPACE4:23
theorem Th24: :: RSSPACE4:24
theorem Th25: :: RSSPACE4:25
theorem Th26: :: RSSPACE4:26
theorem Th27: :: RSSPACE4:27
Lemma35: 
for b1 being  Real
 for b2 being  Real_Sequence  st b2 is convergent & ex b3 being  Nat st 
for b4 being  Nat  st b3 <= b4 holds 
b2 . b4 <= b1 holds 
 lim b2 <= b1
 
theorem Th28: :: RSSPACE4:28
theorem Th29: :: RSSPACE4:29