:: RSSPACE4 semantic presentation
Lemma1:
for b1 being Real_Sequence
for b2 being real number st ( for b3 being Nat holds b1 . b3 <= b2 ) holds
sup (rng b1) <= b2
Lemma2:
for b1 being Real_Sequence st b1 is bounded holds
for b2 being Nat holds b1 . b2 <= sup (rng b1)
:: deftheorem Def1 defines the_set_of_BoundedRealSequences RSSPACE4:def 1 :
Lemma4:
RLSStruct(# the_set_of_BoundedRealSequences ,(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ) #) is Subspace of Linear_Space_of_RealSequences
by RSSPACE:13;
registration
cluster RLSStruct(#
the_set_of_BoundedRealSequences ,
(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),
(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),
(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ) #)
-> Abelian add-associative right_zeroed right_complementable RealLinearSpace-like ;
coherence
( RLSStruct(# the_set_of_BoundedRealSequences ,(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ) #) is Abelian & RLSStruct(# the_set_of_BoundedRealSequences ,(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ) #) is add-associative & RLSStruct(# the_set_of_BoundedRealSequences ,(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ) #) is right_zeroed & RLSStruct(# the_set_of_BoundedRealSequences ,(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ) #) is right_complementable & RLSStruct(# the_set_of_BoundedRealSequences ,(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ) #) is RealLinearSpace-like )
by RSSPACE:13;
end;
Lemma5:
( RLSStruct(# the_set_of_BoundedRealSequences ,(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ) #) is Abelian & RLSStruct(# the_set_of_BoundedRealSequences ,(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ) #) is add-associative & RLSStruct(# the_set_of_BoundedRealSequences ,(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ) #) is right_zeroed & RLSStruct(# the_set_of_BoundedRealSequences ,(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ) #) is right_complementable & RLSStruct(# the_set_of_BoundedRealSequences ,(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ) #) is RealLinearSpace-like )
;
Lemma6:
ex b1 being Function of the_set_of_BoundedRealSequences , REAL st
for b2 being set st b2 in the_set_of_BoundedRealSequences holds
b1 . b2 = sup (rng (abs (seq_id b2)))
:: deftheorem Def2 defines linfty_norm RSSPACE4:def 2 :
Lemma8:
for b1 being Real_Sequence st ( for b2 being Nat holds b1 . b2 = 0 ) holds
( b1 is bounded & sup (rng (abs b1)) = 0 )
Lemma9:
for b1 being Real_Sequence st b1 is bounded & sup (rng (abs b1)) = 0 holds
for b2 being Nat holds b1 . b2 = 0
theorem Th1: :: RSSPACE4:1
canceled;
theorem Th2: :: RSSPACE4:2
registration
cluster NORMSTR(#
the_set_of_BoundedRealSequences ,
(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),
(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),
(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),
linfty_norm #)
-> Abelian add-associative right_zeroed right_complementable RealLinearSpace-like ;
coherence
( NORMSTR(# the_set_of_BoundedRealSequences ,(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),linfty_norm #) is Abelian & NORMSTR(# the_set_of_BoundedRealSequences ,(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),linfty_norm #) is add-associative & NORMSTR(# the_set_of_BoundedRealSequences ,(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),linfty_norm #) is right_zeroed & NORMSTR(# the_set_of_BoundedRealSequences ,(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),linfty_norm #) is right_complementable & NORMSTR(# the_set_of_BoundedRealSequences ,(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),linfty_norm #) is RealLinearSpace-like )
by Lemma5, RSSPACE3:4;
end;
definition
func linfty_Space -> non
empty NORMSTR equals :: RSSPACE4:def 3
NORMSTR(#
the_set_of_BoundedRealSequences ,
(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),
(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),
(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),
linfty_norm #);
coherence
NORMSTR(# the_set_of_BoundedRealSequences ,(Zero_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Add_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),(Mult_ the_set_of_BoundedRealSequences ,Linear_Space_of_RealSequences ),linfty_norm #) is non empty NORMSTR
;
end;
:: deftheorem Def3 defines linfty_Space RSSPACE4:def 3 :
theorem Th3: :: RSSPACE4:3
theorem Th4: :: RSSPACE4:4
theorem Th5: :: RSSPACE4:5
:: deftheorem Def4 defines bounded RSSPACE4:def 4 :
theorem Th6: :: RSSPACE4:6
:: deftheorem Def5 defines BoundedFunctions RSSPACE4:def 5 :
theorem Th7: :: RSSPACE4:7
theorem Th8: :: RSSPACE4:8
for
b1 being non
empty set for
b2 being
RealNormSpace holds
RLSStruct(#
(BoundedFunctions b1,b2),
(Zero_ (BoundedFunctions b1,b2),(RealVectSpace b1,b2)),
(Add_ (BoundedFunctions b1,b2),(RealVectSpace b1,b2)),
(Mult_ (BoundedFunctions b1,b2),(RealVectSpace b1,b2)) #) is
Subspace of
RealVectSpace b1,
b2
registration
let c1 be non
empty set ;
let c2 be
RealNormSpace;
cluster RLSStruct(#
(BoundedFunctions a1,a2),
(Zero_ (BoundedFunctions a1,a2),(RealVectSpace a1,a2)),
(Add_ (BoundedFunctions a1,a2),(RealVectSpace a1,a2)),
(Mult_ (BoundedFunctions a1,a2),(RealVectSpace a1,a2)) #)
-> Abelian add-associative right_zeroed right_complementable RealLinearSpace-like ;
coherence
( RLSStruct(# (BoundedFunctions c1,c2),(Zero_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)),(Add_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)),(Mult_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)) #) is Abelian & RLSStruct(# (BoundedFunctions c1,c2),(Zero_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)),(Add_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)),(Mult_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)) #) is add-associative & RLSStruct(# (BoundedFunctions c1,c2),(Zero_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)),(Add_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)),(Mult_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)) #) is right_zeroed & RLSStruct(# (BoundedFunctions c1,c2),(Zero_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)),(Add_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)),(Mult_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)) #) is right_complementable & RLSStruct(# (BoundedFunctions c1,c2),(Zero_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)),(Add_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)),(Mult_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)) #) is RealLinearSpace-like )
by Th8;
end;
definition
let c1 be non
empty set ;
let c2 be
RealNormSpace;
func R_VectorSpace_of_BoundedFunctions c1,
c2 -> RealLinearSpace equals :: RSSPACE4:def 6
RLSStruct(#
(BoundedFunctions a1,a2),
(Zero_ (BoundedFunctions a1,a2),(RealVectSpace a1,a2)),
(Add_ (BoundedFunctions a1,a2),(RealVectSpace a1,a2)),
(Mult_ (BoundedFunctions a1,a2),(RealVectSpace a1,a2)) #);
coherence
RLSStruct(# (BoundedFunctions c1,c2),(Zero_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)),(Add_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)),(Mult_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)) #) is RealLinearSpace
;
end;
:: deftheorem Def6 defines R_VectorSpace_of_BoundedFunctions RSSPACE4:def 6 :
for
b1 being non
empty set for
b2 being
RealNormSpace holds
R_VectorSpace_of_BoundedFunctions b1,
b2 = RLSStruct(#
(BoundedFunctions b1,b2),
(Zero_ (BoundedFunctions b1,b2),(RealVectSpace b1,b2)),
(Add_ (BoundedFunctions b1,b2),(RealVectSpace b1,b2)),
(Mult_ (BoundedFunctions b1,b2),(RealVectSpace b1,b2)) #);
theorem Th9: :: RSSPACE4:9
canceled;
theorem Th10: :: RSSPACE4:10
theorem Th11: :: RSSPACE4:11
theorem Th12: :: RSSPACE4:12
:: deftheorem Def7 defines modetrans RSSPACE4:def 7 :
:: deftheorem Def8 defines PreNorms RSSPACE4:def 8 :
theorem Th13: :: RSSPACE4:13
theorem Th14: :: RSSPACE4:14
theorem Th15: :: RSSPACE4:15
definition
let c1 be non
empty set ;
let c2 be
RealNormSpace;
func BoundedFunctionsNorm c1,
c2 -> Function of
BoundedFunctions a1,
a2,
REAL means :
Def9:
:: RSSPACE4:def 9
for
b1 being
set st
b1 in BoundedFunctions a1,
a2 holds
a3 . b1 = sup (PreNorms (modetrans b1,a1,a2));
existence
ex b1 being Function of BoundedFunctions c1,c2, REAL st
for b2 being set st b2 in BoundedFunctions c1,c2 holds
b1 . b2 = sup (PreNorms (modetrans b2,c1,c2))
by Th15;
uniqueness
for b1, b2 being Function of BoundedFunctions c1,c2, REAL st ( for b3 being set st b3 in BoundedFunctions c1,c2 holds
b1 . b3 = sup (PreNorms (modetrans b3,c1,c2)) ) & ( for b3 being set st b3 in BoundedFunctions c1,c2 holds
b2 . b3 = sup (PreNorms (modetrans b3,c1,c2)) ) holds
b1 = b2
end;
:: deftheorem Def9 defines BoundedFunctionsNorm RSSPACE4:def 9 :
theorem Th16: :: RSSPACE4:16
theorem Th17: :: RSSPACE4:17
definition
let c1 be non
empty set ;
let c2 be
RealNormSpace;
func R_NormSpace_of_BoundedFunctions c1,
c2 -> non
empty NORMSTR equals :: RSSPACE4:def 10
NORMSTR(#
(BoundedFunctions a1,a2),
(Zero_ (BoundedFunctions a1,a2),(RealVectSpace a1,a2)),
(Add_ (BoundedFunctions a1,a2),(RealVectSpace a1,a2)),
(Mult_ (BoundedFunctions a1,a2),(RealVectSpace a1,a2)),
(BoundedFunctionsNorm a1,a2) #);
coherence
NORMSTR(# (BoundedFunctions c1,c2),(Zero_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)),(Add_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)),(Mult_ (BoundedFunctions c1,c2),(RealVectSpace c1,c2)),(BoundedFunctionsNorm c1,c2) #) is non empty NORMSTR
;
end;
:: deftheorem Def10 defines R_NormSpace_of_BoundedFunctions RSSPACE4:def 10 :
for
b1 being non
empty set for
b2 being
RealNormSpace holds
R_NormSpace_of_BoundedFunctions b1,
b2 = NORMSTR(#
(BoundedFunctions b1,b2),
(Zero_ (BoundedFunctions b1,b2),(RealVectSpace b1,b2)),
(Add_ (BoundedFunctions b1,b2),(RealVectSpace b1,b2)),
(Mult_ (BoundedFunctions b1,b2),(RealVectSpace b1,b2)),
(BoundedFunctionsNorm b1,b2) #);
theorem Th18: :: RSSPACE4:18
theorem Th19: :: RSSPACE4:19
theorem Th20: :: RSSPACE4:20
theorem Th21: :: RSSPACE4:21
theorem Th22: :: RSSPACE4:22
theorem Th23: :: RSSPACE4:23
theorem Th24: :: RSSPACE4:24
theorem Th25: :: RSSPACE4:25
theorem Th26: :: RSSPACE4:26
theorem Th27: :: RSSPACE4:27
Lemma35:
for b1 being Real
for b2 being Real_Sequence st b2 is convergent & ex b3 being Nat st
for b4 being Nat st b3 <= b4 holds
b2 . b4 <= b1 holds
lim b2 <= b1
theorem Th28: :: RSSPACE4:28
theorem Th29: :: RSSPACE4:29